Several Sterilization Strategies Maintain the Functionality of Mucin Glycoproteins
Mucin glycoproteins, the macromolecular components of mucus, combine a broad range of biomedically important properties. Among those is the ability of mucin solutions to act as excellent lubricants. However, to be able to use purified, endogenous mucin glycoproteins as components of a biomedical pro...
Saved in:
Published in | Macromolecular bioscience Vol. 20; no. 7; pp. e2000090 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mucin glycoproteins, the macromolecular components of mucus, combine a broad range of biomedically important properties. Among those is the ability of mucin solutions to act as excellent lubricants. However, to be able to use purified, endogenous mucin glycoproteins as components of a biomedical product, the mucins need to be sterile; this, in turn, makes it necessary to subject the mucins to quite harsh physical treatments, such as heat exposure, autoclaving, UV‐, or γ‐irradiation, which might compromise the functionality of the glycoproteins. Here, it is shown that mucins are indeed able to withstand most of those treatments without suffering significant lubrication impairment or structural degradation. Among those treatments, which left the mucins unharmed, γ‐irradiation is identified to be the most powerful one in terms of inactivating microbial contaminations. The obtained results demonstrate a remarkable sturdiness of mucins, which opens up broad possibilities for them to be further processed into materials, e.g., as parts of biomedical products.
Mucin glycoproteins, which combine a broad range of biomedically important characteristics, are evaluated regarding their sturdiness toward different sterilization procedures. The influence of thermal treatments, autoclaving, UV‐, or γ‐irradiation on the lubrication ability and structural integrity of the mucin molecules is tested. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1616-5187 1616-5195 1616-5195 |
DOI: | 10.1002/mabi.202000090 |