Gaussian Interference Channel Capacity to Within One Bit

The capacity of the two-user Gaussian interference channel has been open for 30 years. The understanding on this problem has been limited. The best known achievable region is due to Han and Kobayashi but its characterization is very complicated. It is also not known how tight the existing outer boun...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 54; no. 12; pp. 5534 - 5562
Main Authors Etkin, R.H., Tse, D.N.C., Hua Wang
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2008.2006447

Cover

More Information
Summary:The capacity of the two-user Gaussian interference channel has been open for 30 years. The understanding on this problem has been limited. The best known achievable region is due to Han and Kobayashi but its characterization is very complicated. It is also not known how tight the existing outer bounds are. In this work, we show that the existing outer bounds can in fact be arbitrarily loose in some parameter ranges, and by deriving new outer bounds, we show that a very simple and explicit Han-Kobayashi type scheme can achieve to within a single bit per second per hertz (bit/s/Hz) of the capacity for all values of the channel parameters. We also show that the scheme is asymptotically optimal at certain high signal-to-noise ratio (SNR) regimes. Using our results, we provide a natural generalization of the point-to-point classical notion of degrees of freedom to interference-limited scenarios.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2008.2006447