Revealing the Effect of Phase Composition and Transformation on the Mechanical Properties of a Cu–6Ni–6Sn–0.6Si Alloy

In the present study, a Cu–6Ni–6Sn–0.6Si alloy is fabricated through frequency induction melting, then subjected to solution treatment, rolling, and annealing. The phase composition, microstructure evolution, and transition mechanism of the Cu–6Ni–6Sn–0.6Si alloy are researched systematically throug...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 18; p. 5201
Main Authors Liang, Zhuanqin, Fan, Wenxin, Wang, Pengfei, Wang, Yushuai, Zhang, Kai, Zhao, Junsheng, Peng, Lijun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 10.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present study, a Cu–6Ni–6Sn–0.6Si alloy is fabricated through frequency induction melting, then subjected to solution treatment, rolling, and annealing. The phase composition, microstructure evolution, and transition mechanism of the Cu–6Ni–6Sn–0.6Si alloy are researched systematically through simulation calculation and experimental characterization. The ultimate as-annealed sample simultaneously performs with high strength and good ductility according to the uniaxial tensile test results at room temperature. There are amounts of precipitates generated, which are identified as belonging to the DO22 and L12 phases through the transmission electron microscope (TEM) analysis. The DO22 and L12 phase precipitates have a significant strengthening effect. Meanwhile, the generation of the common discontinuous precipitation of the γ phase, which is harmful to the mechanical properties of the copper–nickel–tin alloy, is inhibited mightily during the annealing process, possibly due to the existence of the Ni5Si2 primary phase. Therefore, the as-annealed sample of the Cu–6Ni–6Sn–0.6Si alloy possesses high tensile strength and elongation, which are 967 MPa and 12%, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14185201