Delivery and release of nitinol stent in carotid artery and their interactions: A finite element analysis
Abstract Carotid angioplasty and stenting (CAS) has emerged as an effective alternative to carotid endarterectomy, and nitinol stents are commonly used in CAS. To evaluate biomechanical properties of nitinol carotid stents and their interactions with carotid arteries, a finite element method (FEM) m...
Saved in:
Published in | Journal of biomechanics Vol. 40; no. 13; pp. 3034 - 3040 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2007
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Carotid angioplasty and stenting (CAS) has emerged as an effective alternative to carotid endarterectomy, and nitinol stents are commonly used in CAS. To evaluate biomechanical properties of nitinol carotid stents and their interactions with carotid arteries, a finite element method (FEM) model was built which is composed of a stenotic carotid tissue, a segmented-design nitinol stent and a sheath. Two different stents were considered to show the influence of stent design on the stent–vessel interactions. Results show that the superelastic stents were delivered into the stenotic vessel lumen through the sheath and self-expanded in the internal and common carotid artery. The stent with shorter struts may have better clinical results and the different stent designs can cause different carotid vessel geometry changes. This FEM can provide a convenient way to test and improve biomechanical properties of existing carotid stents and give clues for new nitinol carotid stent designs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2007.02.024 |