Molecular Cloning of a Cytochrome P450 Taxane 10β-hydroxylase cDNA from Taxus and Functional Expression in Yeast

The early steps in the biosynthesis of Taxol involve the cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation at C5, acetylation of this intermediate, and a second cytochrome P450-dependent hydroxylation at C10 to yield taxadien-5α-ac...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 98; no. 4; pp. 1501 - 1506
Main Authors Schoendorf, Anne, Rithner, Christopher D., Williams, Robert M., Croteau, Rodney B.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.02.2001
National Acad Sciences
The National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The early steps in the biosynthesis of Taxol involve the cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation at C5, acetylation of this intermediate, and a second cytochrome P450-dependent hydroxylation at C10 to yield taxadien-5α-acetoxy-10β-ol. Subsequent steps of the pathway involve additional cytochrome P450 catalyzed oxygenations and CoA-dependent acylations. The limited feasibility of reverse genetic cloning of cytochrome P450 oxygenases led to the use of Taxus cell cultures induced for Taxol production and the development of an approach based on differential display of mRNA-reverse transcription-PCR, which ultimately provided full-length forms of 13 unique but closely related cytochrome P450 sequences. Functional expression of these enzymes in yeast was monitored by in situ spectrophotometry coupled to in vivo screening of oxygenase activity by feeding taxoid substrates. This strategy yielded a family of taxoid-metabolizing enzymes and revealed the taxane 10β-hydroxylase as a 1494-bp cDNA that encodes a 498-residue cytochrome P450 capable of transforming taxadienyl acetate to the 10β-hydroxy derivative; the identity of this latter pathway intermediate was confirmed by chromatographic and spectrometric means. The 10β-hydroxylase represents the initial cytochrome P450 gene of Taxol biosynthesis to be isolated by an approach that should provide access to the remaining oxygenases of the pathway.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom reprint requests should be addressed. E-mail: croteau@mail.wsu.edu.
Contributed by Rodney B. Croteau
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.98.4.1501