Solvent-free synthesis of reactive inorganic precursors for preparation of organic/inorganic hybrid materials
Prehydrolyzed-condensed precursors containing amino or glycido groups were prepared via sol gel process using various alkoxysilanes in the bulk, without addition of solvent in any step of their preparation. The influence of the experimental set-up, the functionality and ratio of alkoxysilanes, and t...
Saved in:
Published in | Journal of sol-gel science and technology Vol. 59; no. 3; pp. 598 - 612 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.09.2011
Springer Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Prehydrolyzed-condensed precursors containing amino or glycido groups were prepared via sol gel process using various alkoxysilanes in the bulk, without addition of solvent in any step of their preparation. The influence of the experimental set-up, the functionality and ratio of alkoxysilanes, and type of catalyst, on the structure buildup was studied. In the case of amino precursors, the sol–gel process was carried out at weak basic conditions while in the case of glycido precursors the sol–gel process was catalyzed by acid or neutral pH. The sol–gel process was monitored by
29
Si NMR in solution and the structure of the prehydrolysed-condensed precursors was characterized by small-angle X-Ray scattering. The systems with high content of tetraethoxysilane led to the fast gel formation. In weak acid medium tetraethoxysilane formed larger, more condensed species as well as small structures (based on
Q
1
,
Q
2
and
Q
3
species) with silanol groups. Strong acidic conditions led to the fast formation of insoluble silica particles in liquid (sol) phase containing monomeric alkoxysilanes. The most suitable precursor formulations based on the alkoxysilanes with amino groups, as well as the most efficient set-up, were selected and used to prepare hybrid organic/inorganic networks based on an epoxy matrix. These networks were characterized using dynamic mechanical analysis. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0928-0707 1573-4846 |
DOI: | 10.1007/s10971-011-2534-4 |