A built-in technique for probing power supply and ground noise distribution within large-scale digital integrated circuits
Design of noise detector circuits as compact as standard logic cells is proposed. High-density large-scale digital integrated circuits that embed such built-in noise detectors enable in-depth characterization of dynamic power supply and ground noises. Dependence of power supply and ground voltage dr...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 40; no. 4; pp. 813 - 819 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
New York, NY
IEEE
01.04.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Design of noise detector circuits as compact as standard logic cells is proposed. High-density large-scale digital integrated circuits that embed such built-in noise detectors enable in-depth characterization of dynamic power supply and ground noises. Dependence of power supply and ground voltage drops on the location of active cell rows within 1.8-V standard cell-based digital circuits are consistently measured by 1.8- and 2.5-V built-in detectors fabricated in a 0.18-/spl mu/m CMOS triple-well technology. Measurements also show that ground noise distribution is distinctively more localized than power supply counterparts due to the presence of a substrate. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2005.845559 |