Theoretical and Experimental Studies of Flip-Chip Assembled High- Q Suspended MEMS Inductors

This paper reports the theoretical and experimental studies of high-Q suspended microinductors produced by flip-chip assembly for multigigahertz RF integrated-circuit applications. The effects of device and substrate parameters on the Q factor of the inductor devices are studied by numerical simulat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 55; no. 6; pp. 1171 - 1181
Main Authors Jun Zeng, Changhai Wang, Sangster, A.J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper reports the theoretical and experimental studies of high-Q suspended microinductors produced by flip-chip assembly for multigigahertz RF integrated-circuit applications. The effects of device and substrate parameters on the Q factor of the inductor devices are studied by numerical simulation using Ansoft's high frequency structure simulator electromagnetic field simulation package. Suspended inductor devices are realized using a flip-chip assembly method in which the inductor structures with the supporting pillars are fabricated on a low-cost polyimide thin-film carrier and then assembled onto a low resistivity (3-4 Omegaldrcm) silicon substrate by flip-chip bonding. Individual and 2times2 arrays of meander and spiral inductor designs have been successfully fabricated with air gap heights ranging from 15 to 31 mum. Maximum Q factors of ~15 and ~13 at ~1 GHz have been achieved for meander and spiral suspended inductor devices before pad deembedding. It is shown that the optimal air gap between the inductor and substrate surface is ~15 mum beyond which no further enhancement in the Q factor can be obtained for devices on low-resistivity substrates. The experimental results are in excellent agreement with that of theoretical simulation. The inductor assembly method requires minimal chip/wafer processing for integration of high-Q inductors.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2007.897716