Evaluation of Gallic Acid-Coated Gold Nanoparticles as an Anti-Aging Ingredient

Hyperglycemic environment-induced oxidative stress-mediated matrix metalloproteinase-1 (MMP-1) plays a crucial role in the degradation of the extracellular matrix (ECM), which might contribute to premature skin aging. Synthesized, environmentally friendly gallic acid-coated gold nanoparticles (GA–Au...

Full description

Saved in:
Bibliographic Details
Published inPharmaceuticals (Basel, Switzerland) Vol. 14; no. 11; p. 1071
Main Authors Wu, Yun-Zhen, Tsai, Yen-Yu, Chang, Long-Sen, Chen, Ying-Jung
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 22.10.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8247
1424-8247
DOI10.3390/ph14111071

Cover

Loading…
More Information
Summary:Hyperglycemic environment-induced oxidative stress-mediated matrix metalloproteinase-1 (MMP-1) plays a crucial role in the degradation of the extracellular matrix (ECM), which might contribute to premature skin aging. Synthesized, environmentally friendly gallic acid-coated gold nanoparticles (GA–AuNPs) have been evaluated as an anti-aging antioxidant. Their microstructure was characterized by transmission electron microscopy (TEM), which showed that GA–AuNPs are spherical when prepared at pH 11. Dynamic light scattering (DLS) analysis revealed that the average hydrodynamic diameter of a GA–AuNP is approximately 40 nm and with a zeta potential of −49.63 ± 2.11 mV. Additionally, the present data showed that GA–AuNPs have a superior ability to inhibit high glucose-mediated MMP-1-elicited type I collagen degradation in dermal fibroblast cells. Collectively, our data indicated that high-glucose-mediated ROS production was reduced upon cell treatment with GA–AuNPs, which blocked p38 MAPK/ERK-mediated c-Jun, c-Fos, ATF-2 phosphorylation, and the phosphorylation of NFκB, leading to the down-regulation of MMP-1 mRNA and protein expression in high glucose-treated cells. Our findings suggest that GA-AuNPs have a superior ability to inhibit high-glucose-mediated MMP-1-elicited ECM degradation, which highlights its potential as an anti-aging ingredient.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8247
1424-8247
DOI:10.3390/ph14111071