Interlayer Bound Wannier Excitons in Germanium Sulfide

We report a cathodoluminescence (CL) study of layered germanium sulfide (GeS) where we observe a sharp emission peak from flakes covered with a thin hexagonal boron nitride film. GeS is a material that has recently attracted considerable interest due to its emission in the visible region and its str...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 13; no. 16; p. 3568
Main Authors Postorino, Sara, Sun, Jianbo, Fiedler, Saskia, Lee Cheong Lem, Laurent O., Palummo, Maurizia, Camilli, Luca
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 12.08.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a cathodoluminescence (CL) study of layered germanium sulfide (GeS) where we observe a sharp emission peak from flakes covered with a thin hexagonal boron nitride film. GeS is a material that has recently attracted considerable interest due to its emission in the visible region and its strong anisotropy. The measured CL peak is at ~1.69 eV for samples ranging in thickness from 97 nm to 45 nm, where quantum-confinement effects can be excluded. By performing ab initio ground- and excited-state simulations for the bulk compound, we show that the measured optical peak can be unambiguously explained by radiative recombination of the first free bright bound exciton, which is due to a mixing of direct transitions near the Γ-point of the Brillouin Zone and it is associated to a very large optical anisotropy. The analysis of the corresponding excitonic wave function shows a Wannier–Mott interlayer character, being spread not only in-plane but also out-of-plane.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13163568