Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates
Retinal dystrophies and age-related macular degeneration related to photoreceptor degeneration can cause blindness. In blind patients, although the electrical activation of the residual retinal circuit can provide useful artificial visual perception, the resolutions of current retinal prostheses hav...
Saved in:
Published in | Nature biomedical engineering Vol. 4; no. 2; pp. 172 - 180 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Retinal dystrophies and age-related macular degeneration related to photoreceptor degeneration can cause blindness. In blind patients, although the electrical activation of the residual retinal circuit can provide useful artificial visual perception, the resolutions of current retinal prostheses have been limited either by large electrodes or small numbers of pixels. Here we report the evaluation, in three awake non-human primates, of a previously reported near-infrared-light-sensitive photovoltaic subretinal prosthesis. We show that multipixel stimulation of the prosthesis within radiation safety limits enabled eye tracking in the animals, that they responded to stimulations directed at the implant with repeated saccades and that the implant-induced responses were present two years after device implantation. Our findings pave the way for the clinical evaluation of the prosthesis in patients affected by dry atrophic age-related macular degeneration.
A near-infrared-light-sensitive photovoltaic subretinal prosthesis triggers behavioural responses in awake macaques, even two years after device implantation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2157-846X 2157-846X |
DOI: | 10.1038/s41551-019-0484-2 |