Role of naturally occurring osmolytes in protein folding and stability

Osmolytes are typically accumulated in the intracellular environment at relatively high concentrations when cells/tissues are subjected to stress conditions. Osmolytes are common in a variety of organisms, including microorganisms, plants, and animals. They enhance thermodynamic stability of protein...

Full description

Saved in:
Bibliographic Details
Published inArchives of biochemistry and biophysics Vol. 491; no. 1; pp. 1 - 6
Main Author Kumar, Raj
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Osmolytes are typically accumulated in the intracellular environment at relatively high concentrations when cells/tissues are subjected to stress conditions. Osmolytes are common in a variety of organisms, including microorganisms, plants, and animals. They enhance thermodynamic stability of proteins by providing natively folded conformations without perturbing other cellular processes. By burying the backbone into the core of folded proteins, osmolytes can provide significant stability to proteins. Two properties of osmolytes are particularly important: (i) their ability to impart increased thermodynamic stability to folded proteins; and (ii) their compatibility in the intracellular environment at high concentrations. Under physiological conditions, the cellular compositions of osmolytes may vary significantly. This may lead to different protein folding pathways utilized in cells depending upon the intracellular environment. Proper understanding of the role of osmolytes in cell regulation should allow predicting the action of osmolytes on macromolecular interactions in stressed and crowded environments typical of cellular conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2009.09.007