Grain Refinement Mechanisms of TiC0.5N0.5 Nanoparticles in Aluminum
In this study, TiC0.5N0.5 nanoparticles (NPs) are shown to induce a remarkable grain refinement of aluminum at various cooling rates. The grain refinement mechanisms are systematically investigated by microstructure observation, edge-to-edge matching (E2EM) model prediction, and first-principles cal...
Saved in:
Published in | Materials Vol. 16; no. 3; p. 1214 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
31.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, TiC0.5N0.5 nanoparticles (NPs) are shown to induce a remarkable grain refinement of aluminum at various cooling rates. The grain refinement mechanisms are systematically investigated by microstructure observation, edge-to-edge matching (E2EM) model prediction, and first-principles calculations. The experimental results suggest that as the cooling rates increase from 10 K/s to 70 K/s, a transition from intergranular to intragranular distribution of NPs occurs and the Al/TiC0.5N0.5 interface varies from incoherent to coherent. Based on the E2EM analysis combined with first-principles calculation, it is found that TiC0.5N0.5 can act as a potent nucleant for the heterogeneous nucleation of α-Al. By analyzing the NP effects on the nucleation and growth of α-Al, the grain growth restriction and nucleation promotion mechanisms are proposed to elucidate the refinement phenomena at low and high cooling conditions, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16031214 |