Accurate Modeling of Working Normal Rake Angles and Working Inclination Angles of Active Cutting Edges and Application in Cutting Force Prediction
The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cut...
Saved in:
Published in | Micromachines (Basel) Vol. 12; no. 10; p. 1207 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2072-666X 2072-666X |
DOI | 10.3390/mi12101207 |
Cover
Loading…
Abstract | The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining. |
---|---|
AbstractList | The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining.The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining. The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining. |
Author | Chang, Zhiyong Li, Peng |
AuthorAffiliation | 2 Institute for Aero-Engine Smart Assembly of Shaanxi Province, Xi’an 710072, China 1 Department of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lip973@mail.nwpu.edu.cn |
AuthorAffiliation_xml | – name: 2 Institute for Aero-Engine Smart Assembly of Shaanxi Province, Xi’an 710072, China – name: 1 Department of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lip973@mail.nwpu.edu.cn |
Author_xml | – sequence: 1 givenname: Peng surname: Li fullname: Li, Peng – sequence: 2 givenname: Zhiyong surname: Chang fullname: Chang, Zhiyong |
BookMark | eNptktuKFDEQhoOsuLvj3vgEDd6IMJpDn3IjNMOuDqwHRNG7kE4qbWbTyZjuXvA19olNz4yju5iLSpH6_p8iVefoxAcPCD0j-BVjHL_uLaEEE4qrR-gsRbosy_L7yT_5KboYhg1Op6p4Ck_QKcvLmtGiPkN3jVJTlCNk74MGZ32XBZN9C_FmTj-E2EuXfZY3kDW-czBk0utjee1VUsjRBv-nnMSNGu0tZKtpHGfoUncHWbPdOqv2uPVH4CpEBdmnCNqqufYUPTbSDXBxuBfo69Xll9W75fXHt-tVc71Uec7HJTeUEMB5XVPNqS6N0qSQtKxbQrlWkhFcKUwUbQ3wsjbEtK2i1IBhQFti2AKt9746yI3YRtvL-EsEacXuIcROyDha5UBQg0uJW93mpspZYTgrcsZyWrOybTEjyevN3ms7tT1oBX6M0t0zvV_x9ofowq2oC1ZyzpLBi4NBDD8nGEbR20GBc9JDmAaRhpVXdUHojD5_gG7CFH36qh2VF3R2XKCXe0rFMAwRzLEZgsW8OeLv5iQYP4CVHXeDSs1a9z_Jb2RXx0k |
CitedBy_id | crossref_primary_10_37990_medr_1249118 crossref_primary_10_3390_mi13020211 |
Cites_doi | 10.1016/0020-7357(86)90034-X 10.1016/j.trpro.2019.07.086 10.1016/j.jmapro.2021.07.041 10.1016/j.cirp.2021.04.071 10.1007/s00170-017-1202-4 10.1016/j.ijmecsci.2010.12.007 10.1016/j.apm.2009.12.009 10.1016/j.jmatprotec.2013.01.015 10.1243/PIME_PROC_1951_165_008_02 10.1016/0020-7357(70)90018-1 10.1016/j.ijmachtools.2004.02.015 10.1115/1.2830102 10.1016/j.ijmachtools.2004.07.005 10.1016/0020-7357(82)90025-7 10.1016/j.jmapro.2020.04.068 10.1007/s00170-014-5877-5 10.1017/CBO9780511843723 10.1115/1.1590999 10.1243/PIME_PROC_1987_201_108_02 10.1016/j.ijmachtools.2004.01.015 10.1115/1.4009380 10.1016/0020-7403(95)00036-W 10.3390/met10020170 10.1007/s00170-018-2829-5 10.1080/00207547308929953 10.1007/s00339-012-6973-8 10.1016/j.matdes.2005.05.015 10.1016/j.apm.2011.04.017 10.1016/0020-7357(86)90211-8 10.1016/j.jmatprotec.2020.116991 10.1016/j.wear.2011.02.018 10.1007/s00170-015-7548-6 10.1016/j.jmatprotec.2004.07.092 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/mi12101207 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | oai_doaj_org_article_2f06a0bdb4f7435f93543342836bb031 PMC8536993 10_3390_mi12101207 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c449t-9f211e04882d92d6fcd15a268b129dca3107c01c2bfe968f1fbbc22fef3e2b1f3 |
IEDL.DBID | BENPR |
ISSN | 2072-666X |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Thu Aug 21 18:24:26 EDT 2025 Fri Jul 11 12:03:33 EDT 2025 Fri Jul 25 12:09:29 EDT 2025 Tue Jul 01 03:41:12 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-9f211e04882d92d6fcd15a268b129dca3107c01c2bfe968f1fbbc22fef3e2b1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2584452699?pq-origsite=%requestingapplication% |
PMID | 34683258 |
PQID | 2584452699 |
PQPubID | 2032359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2f06a0bdb4f7435f93543342836bb031 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536993 proquest_miscellaneous_2584785123 proquest_journals_2584452699 crossref_primary_10_3390_mi12101207 crossref_citationtrail_10_3390_mi12101207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Armarego (ref_14) 1970; 10 Xie (ref_24) 2020; 56 (ref_9) 1982; 22 Wu (ref_22) 2016; 82 Saglam (ref_20) 2007; 28 Xue (ref_33) 2011; 270 Aslan (ref_19) 2004; 44 Arsecularatne (ref_28) 1998; 120 ref_34 Siju (ref_3) 2021; 69 Czarnota (ref_31) 2013; 213 Lai (ref_25) 2012; 108 Moufki (ref_29) 2005; 45 Hanif (ref_1) 2019; 100 Grzesik (ref_11) 1986; 26 Korkut (ref_18) 2005; 166 Osman (ref_8) 1973; 11 Chang (ref_32) 2018; 95 Zlamal (ref_2) 2019; 40 Shih (ref_21) 1995; 38 Sambhav (ref_13) 2011; 35 Young (ref_27) 1987; 201 Merchant (ref_5) 1944; 11 Hsieh (ref_12) 2010; 34 Molinari (ref_30) 2011; 53 Turan (ref_4) 2017; 378–379 Ohbuchi (ref_15) 2003; 125 Sun (ref_35) 2021; 290 ref_26 (ref_10) 1986; 26 Courbon (ref_17) 2021; 70 Stabler (ref_6) 1951; 165 ref_7 Komanduri (ref_16) 2004; 44 Menezes (ref_23) 2014; 73 |
References_xml | – ident: ref_7 – volume: 26 start-page: 443 year: 1986 ident: ref_11 article-title: Stereometric and kinematic problems occurring during cutting with single-edged tools publication-title: Int. J. Mach. Tool Des. Res. doi: 10.1016/0020-7357(86)90034-X – volume: 40 start-page: 602 year: 2019 ident: ref_2 article-title: The geometry of grooving tool and its influence on dynamic load system for turning publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2019.07.086 – volume: 69 start-page: 235 year: 2021 ident: ref_3 article-title: Effects of rake surface texture geometries on the performance of single-point cutting tools in hard turning of titanium alloy publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.07.041 – volume: 70 start-page: 57 year: 2021 ident: ref_17 article-title: A 3D modeling strategy to predict efficiently cutting tool wear in longitudinal turning of AISI 1045 steel publication-title: CIRP Ann. doi: 10.1016/j.cirp.2021.04.071 – volume: 95 start-page: 243 year: 2018 ident: ref_32 article-title: A new mathematical method of modeling parts in virtual CNC lathing and its application on accurate tool path generation publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1202-4 – volume: 378–379 start-page: 58 year: 2017 ident: ref_4 article-title: Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718 publication-title: Wear – volume: 53 start-page: 183 year: 2011 ident: ref_30 article-title: Numerical and analytical modeling of orthogonal cutting: The link between local variables and global contact characteristics publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2010.12.007 – volume: 34 start-page: 2738 year: 2010 ident: ref_12 article-title: Mathematical modeling of interrelationships among cutting angles, setting angles and working angles of single-point cutting tools publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2009.12.009 – volume: 213 start-page: 1166 year: 2013 ident: ref_31 article-title: Modeling of velocity-dependent chip flow angle and experimental analysis when machining 304L austenitic stainless steel with groove coated-carbide tools publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2013.01.015 – volume: 165 start-page: 14 year: 1951 ident: ref_6 article-title: The Fundamental Geometry of Cutting Tools publication-title: Proc. Inst. Mech. Eng. doi: 10.1243/PIME_PROC_1951_165_008_02 – volume: 10 start-page: 361 year: 1970 ident: ref_14 article-title: Metal cutting analyses for turning operations publication-title: Int. J. Mach. Tool Des. Res. doi: 10.1016/0020-7357(70)90018-1 – volume: 44 start-page: 1115 year: 2004 ident: ref_16 article-title: The significance of normal rake in oblique machining publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2004.02.015 – volume: 120 start-page: 1 year: 1998 ident: ref_28 article-title: Prediction of Chip Flow Direction, Cutting Forces and Surface Roughness in Finish Turning publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.2830102 – volume: 45 start-page: 181 year: 2005 ident: ref_29 article-title: A new thermomechanical model of cutting applied to turning operations publication-title: Part II. Parametric study. Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2004.07.005 – volume: 22 start-page: 177 year: 1982 ident: ref_9 article-title: A new method for analysing and calculating angles on cutting tools publication-title: Int. J. Mach. Tool Des. Res. doi: 10.1016/0020-7357(82)90025-7 – volume: 56 start-page: 280 year: 2020 ident: ref_24 article-title: Rake angle effect in cutting-based single atomic layer removal publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.04.068 – volume: 73 start-page: 875 year: 2014 ident: ref_23 article-title: An explicit finite element model to study the influence of rake angle and friction during orthogonal metal cutting publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-5877-5 – ident: ref_26 doi: 10.1017/CBO9780511843723 – volume: 125 start-page: 324 year: 2003 ident: ref_15 article-title: Finite Element Modeling of Chip Formation in the Domain of Negative Rake Angle Cutting publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.1590999 – volume: 201 start-page: 213 year: 1987 ident: ref_27 article-title: Allowing for Nose Radius Effects in Predicting the Chip Flow Direction and Cutting Forces in Bar Turning publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1243/PIME_PROC_1987_201_108_02 – volume: 44 start-page: 953 year: 2004 ident: ref_19 article-title: Investigation of the effect of rake angle on main cutting force publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2004.01.015 – volume: 11 start-page: A168 year: 1944 ident: ref_5 article-title: Basic Mechanics of the Metal-Cutting Process publication-title: J. Appl. Mech. doi: 10.1115/1.4009380 – volume: 38 start-page: 1 year: 1995 ident: ref_21 article-title: Finite element analysis of the rake angle effects in orthogonal metal cutting publication-title: Int. J. Mech. Sci. doi: 10.1016/0020-7403(95)00036-W – ident: ref_34 doi: 10.3390/met10020170 – volume: 100 start-page: 1893 year: 2019 ident: ref_1 article-title: Optimization of facing process by indigenously developed force dynamometer publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2829-5 – volume: 11 start-page: 113 year: 1973 ident: ref_8 article-title: Reference systems for cutting tool geometry and their transformation matrices publication-title: Int. J. Prod. Res. doi: 10.1080/00207547308929953 – volume: 108 start-page: 809 year: 2012 ident: ref_25 article-title: Study on critical rake angle in nanometric cutting publication-title: Appl. Phys. A doi: 10.1007/s00339-012-6973-8 – volume: 28 start-page: 101 year: 2007 ident: ref_20 article-title: The effect of tool geometry and cutting speed on main cutting force and tool tip temperature publication-title: Mater. Des. doi: 10.1016/j.matdes.2005.05.015 – volume: 35 start-page: 5143 year: 2011 ident: ref_13 article-title: A generic mathematical model of single point cutting tools in terms of grinding parameters publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.04.017 – volume: 26 start-page: 99 year: 1986 ident: ref_10 article-title: Graphic determination of geometric angles on metal-cutting tools publication-title: Int. J. Mach. Tool Des. Res. doi: 10.1016/0020-7357(86)90211-8 – volume: 290 start-page: 116991 year: 2021 ident: ref_35 article-title: Modeling of force and temperature in cutting of particle reinforced metal matrix composites considering particle effects publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2020.116991 – volume: 270 start-page: 895 year: 2011 ident: ref_33 article-title: Adhering layer formation and its effect on the wear of coated carbide tools during turning of a nickel-based alloy publication-title: Wear doi: 10.1016/j.wear.2011.02.018 – volume: 82 start-page: 1941 year: 2016 ident: ref_22 article-title: Experimental investigation of specific cutting energy and surface quality based on negative effective rake angle in micro turning publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7548-6 – volume: 166 start-page: 44 year: 2005 ident: ref_18 article-title: Experimental investigation of the effect of cutting tool rake angle on main cutting force publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2004.07.092 |
SSID | ssj0000779007 |
Score | 2.2317607 |
Snippet | The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1207 |
SubjectTerms | active cutting edges Cutting force cutting force prediction Cutting parameters Differential geometry Feed rate Geometry Inclination angle machining Mathematical models Rake angle turning Turning (machining) turning geometry Velocity working normal rake angle Workpieces |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTu2hanmItICMyoVDRGLHeRwDYoWQukKIlbhFtjMuK7ZZtOz-kf7izjjZkEiVeuGamUSJZ-z5Jh5_w9iZsrbOoaZjv7EKExXpUINCX1ZSgcX4bfxG-89pejNLbh_V46DVF9WEtfTA7cBdCBelOjK1SRwGO-UKqRIpiSYsNSbyJ6gFxrxBMuXXYKLRi7KWj1RiXn_xe05UWbGgvrGDCOSJ-kfoclwbOQg2ky_sc4cSedm-3Vf2AZpd9mnAHbjH_pTWbojngVM7MzpUzpeOd_---ZSg6ILf62fgZfNrAa9cN3UvxlWBDuKSUbZivLn0ax-_2vhaaH5N_A_-tvJtl5vPm15hslxZ4Hcr2ush2T6bTa4frm7CrsFCaJOkWIeFw_QPaA6LuhB16mwdKy3S3CAKqK1G6JfZKLbCOCjS3MXOGCuEAydBmNjJA7bTLBs4ZNzGYBWmbhbyPAGQeaYLl6QuKvIYdKQCdr4d9Mp27OPUBGNRYRZCBqreDBSwH73uS8u58U-tS7Jdr0E82f4Cek_VeU_1P-8J2NHW8lU3eV8rgaDMd14vAnbai3Ha0V6KbmC5aXUyRKtCBiwbeczohcaSZv7kCbwRIuHD5bf3-ILv7KOgMhtfX3jEdtarDRwjTlqbEz8l_gIushKL priority: 102 providerName: Directory of Open Access Journals |
Title | Accurate Modeling of Working Normal Rake Angles and Working Inclination Angles of Active Cutting Edges and Application in Cutting Force Prediction |
URI | https://www.proquest.com/docview/2584452699 https://www.proquest.com/docview/2584785123 https://pubmed.ncbi.nlm.nih.gov/PMC8536993 https://doaj.org/article/2f06a0bdb4f7435f93543342836bb031 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9gIPiE8RGJURvPAQLbHjNHlC2dQyIVFNE5P2FtnOeVQryejHP8JfzJ3rpo2EeO1d2ipnn3_34d8x9klZ2xTQ0LXfVMWZSnSsQeFaVlKBxfPb-EL791l-eZN9u1W3IeG2Cm2VO5_oHXXTWcqRnwk8Kf047PLLw--YpkZRdTWM0DhiJ-iCCwy-Ts4ns6vrPsuSEJ1eMt7ykkqM789-zYkyKxU0P_bgJPKE_QOUOeyRPDh0ps_Y04AWebU173P2CNoX7MkBh-BL9qeydkN8D5zGmtHlct45HnLgfEaQdMGv9T3wqr1bwIrrtunF6B3oQi4ZZyfGhyvvA_nFxvdE8wnxQPjHqn21m8_bXmHaLS3wqyXVfEj2it1MJz8uLuMwaCG2WVau49JhGAi0l0VTiiZ3tkmVFnlhEA00ViMEHNsktcI4KPPCpc4YK4QDJ0GY1MnX7LjtWnjDuE3BKgzhLBRFBiCLsS5dlrukLFLQiYrY591Lr21gIadhGIsaoxEyUL03UMQ-9roPW-6Nf2qdk-16DeLL9h90y7s6bL9auCTXiWlM5hAyKVdKlUlJZHO5MejXIna6s3wdNvGq3i-5iH3oxbj9qKaiW-g2W50xolYhIzYerJjBHxpK2vlPT-SNUAm_XL79_4-_Y48FNdL4DsJTdrxebuA9IqG1GbGjYvp1FBb9yOcT_gLo2Q6H |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcIFDACDhyiJk6cxwGhULpsabtCqJV6S2PHLiuWpOxDiL_BD-E3MuM8diMhbr3uTLKrnc8zY8_4G4BXQqky0SVd-_WFGwqvcAstEMsiEFph_Ja20H48ican4aczcbYFf7q7MNRW2flE66jLWtEZ-S7HSGnHYafvLn-4NDWKqqvdCI0GFof610_csi3eHnxA-77mfLR_sjd226kCrgrDdOmmBvc8moDLy5SXkVGlLwoeJRJDX6kKzHdi5fmKS6PTKDG-kVJxbrQJNJe-CfC91-B6GAQprahk9LE_0_GIvM-LGxZUlHu736dE0OVzmla7EffseIBBTjvsyNwIcaM7cLvNTVnWgOkubOnqHtzaYCy8D78zpVbELsFoiBpdZWe1Ye2JO5tQAjxjX4pvmmXVxUwvWFGVvRh9EV3_JSh0Ynw4sx6X7a1sBzbbJ9YJ-1i2rq2zadUrjOq50uzznCpMJHsAp1digIewXdWVfgRM-VoJ3DAqnSSh1kESF6kJI-Olia8LTzjwpvvTc9VyntPojVmOex8yUL42kAMve93Lhunjn1rvyXa9BrFz2w_q-UXeLvacGy8qPFnK0GCCJkwaCIQLUdtFUqIXdWCns3zeuoxFvga4Ay96MS52quAUla5XjU6MOTIPHIgHiBn8oKGkmn61tOGYmOHLg8f___LncGN8cnyUHx1MDp_ATU4tPLZ3cQe2l_OVfoo52FI-s8BncH7VK-0vTOtJXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoFFwIGDFXvX68cBobRN1FKIoopKvRnverdEpHbJQ4i_wc_h1zHjV2IJcevVM37IMzuPndlvAN5IrbPIZHTs15OOL93USY1EXZZCGo3-W5WF9s-T4Pjc_3ghL3bgT3MWhtoqG5tYGuqs0LRHPuDoKctx2PHA1m0R06Pxh-sfDk2QokprM06jUpFT8-snpm_L9ydHKOu3nI9HXw6PnXrCgKN9P145scX8x5AS8yzmWWB15smUB5FCN5jpFGOfULue5sqaOIisZ5XSnFtjheHKswKfewt2Q8yK3B7sHowm07N2h8clKD83rDBRhYjdwdWM4Lo8TrNrt7xgOSygE-F2-zO3HN74PtyrI1U2rFTrAeyY_CHc3cIvfAS_h1qvCWuC0Ug1OtjOCsvq_Xc2oXB4zs7S74YN88u5WbI0z1oyWiY6DEyK0ZDx5mFpf9nhuuzHZiPCoChvG24q7WyWtwzjYqENmy6o3kS0x3B-IyJ4Ar28yM1TYNozWmL6qE0U-caIKExj6wfWjSPPpK7sw7vmpye6RkCnQRzzBDMhElCyEVAfXre81xXuxz-5Dkh2LQdhdZcXisVlUi_9hFs3SF2VKd9iuCZtLKQvBAHdBUqhTe3DfiP5pDYgy2Sj7n141ZJx6VM9J81Nsa54QoyYuehD2NGYzgd1KfnsWwkijmEaPlzs_f_lL-E2rrLk08nk9Bnc4dTPUzYy7kNvtVib5xiQrdSLWvMZfL3pxfYXws9O7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Modeling+of+Working+Normal+Rake+Angles+and+Working+Inclination+Angles+of+Active+Cutting+Edges+and+Application+in+Cutting+Force+Prediction&rft.jtitle=Micromachines+%28Basel%29&rft.au=Li%2C+Peng&rft.au=Chang%2C+Zhiyong&rft.date=2021-10-01&rft.pub=MDPI&rft.eissn=2072-666X&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Fmi12101207&rft_id=info%3Apmid%2F34683258&rft.externalDocID=PMC8536993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |