Accurate Modeling of Working Normal Rake Angles and Working Inclination Angles of Active Cutting Edges and Application in Cutting Force Prediction

The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cut...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 12; no. 10; p. 1207
Main Authors Li, Peng, Chang, Zhiyong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2021
MDPI
Subjects
Online AccessGet full text
ISSN2072-666X
2072-666X
DOI10.3390/mi12101207

Cover

Loading…
Abstract The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining.
AbstractList The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining.The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining.
The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining.
Author Chang, Zhiyong
Li, Peng
AuthorAffiliation 2 Institute for Aero-Engine Smart Assembly of Shaanxi Province, Xi’an 710072, China
1 Department of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lip973@mail.nwpu.edu.cn
AuthorAffiliation_xml – name: 2 Institute for Aero-Engine Smart Assembly of Shaanxi Province, Xi’an 710072, China
– name: 1 Department of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; lip973@mail.nwpu.edu.cn
Author_xml – sequence: 1
  givenname: Peng
  surname: Li
  fullname: Li, Peng
– sequence: 2
  givenname: Zhiyong
  surname: Chang
  fullname: Chang, Zhiyong
BookMark eNptktuKFDEQhoOsuLvj3vgEDd6IMJpDn3IjNMOuDqwHRNG7kE4qbWbTyZjuXvA19olNz4yju5iLSpH6_p8iVefoxAcPCD0j-BVjHL_uLaEEE4qrR-gsRbosy_L7yT_5KboYhg1Op6p4Ck_QKcvLmtGiPkN3jVJTlCNk74MGZ32XBZN9C_FmTj-E2EuXfZY3kDW-czBk0utjee1VUsjRBv-nnMSNGu0tZKtpHGfoUncHWbPdOqv2uPVH4CpEBdmnCNqqufYUPTbSDXBxuBfo69Xll9W75fXHt-tVc71Uec7HJTeUEMB5XVPNqS6N0qSQtKxbQrlWkhFcKUwUbQ3wsjbEtK2i1IBhQFti2AKt9746yI3YRtvL-EsEacXuIcROyDha5UBQg0uJW93mpspZYTgrcsZyWrOybTEjyevN3ms7tT1oBX6M0t0zvV_x9ofowq2oC1ZyzpLBi4NBDD8nGEbR20GBc9JDmAaRhpVXdUHojD5_gG7CFH36qh2VF3R2XKCXe0rFMAwRzLEZgsW8OeLv5iQYP4CVHXeDSs1a9z_Jb2RXx0k
CitedBy_id crossref_primary_10_37990_medr_1249118
crossref_primary_10_3390_mi13020211
Cites_doi 10.1016/0020-7357(86)90034-X
10.1016/j.trpro.2019.07.086
10.1016/j.jmapro.2021.07.041
10.1016/j.cirp.2021.04.071
10.1007/s00170-017-1202-4
10.1016/j.ijmecsci.2010.12.007
10.1016/j.apm.2009.12.009
10.1016/j.jmatprotec.2013.01.015
10.1243/PIME_PROC_1951_165_008_02
10.1016/0020-7357(70)90018-1
10.1016/j.ijmachtools.2004.02.015
10.1115/1.2830102
10.1016/j.ijmachtools.2004.07.005
10.1016/0020-7357(82)90025-7
10.1016/j.jmapro.2020.04.068
10.1007/s00170-014-5877-5
10.1017/CBO9780511843723
10.1115/1.1590999
10.1243/PIME_PROC_1987_201_108_02
10.1016/j.ijmachtools.2004.01.015
10.1115/1.4009380
10.1016/0020-7403(95)00036-W
10.3390/met10020170
10.1007/s00170-018-2829-5
10.1080/00207547308929953
10.1007/s00339-012-6973-8
10.1016/j.matdes.2005.05.015
10.1016/j.apm.2011.04.017
10.1016/0020-7357(86)90211-8
10.1016/j.jmatprotec.2020.116991
10.1016/j.wear.2011.02.018
10.1007/s00170-015-7548-6
10.1016/j.jmatprotec.2004.07.092
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi12101207
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_2f06a0bdb4f7435f93543342836bb031
PMC8536993
10_3390_mi12101207
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c449t-9f211e04882d92d6fcd15a268b129dca3107c01c2bfe968f1fbbc22fef3e2b1f3
IEDL.DBID BENPR
ISSN 2072-666X
IngestDate Wed Aug 27 01:31:28 EDT 2025
Thu Aug 21 18:24:26 EDT 2025
Fri Jul 11 12:03:33 EDT 2025
Fri Jul 25 12:09:29 EDT 2025
Tue Jul 01 03:41:12 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-9f211e04882d92d6fcd15a268b129dca3107c01c2bfe968f1fbbc22fef3e2b1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2584452699?pq-origsite=%requestingapplication%
PMID 34683258
PQID 2584452699
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_2f06a0bdb4f7435f93543342836bb031
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536993
proquest_miscellaneous_2584785123
proquest_journals_2584452699
crossref_primary_10_3390_mi12101207
crossref_citationtrail_10_3390_mi12101207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Micromachines (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Armarego (ref_14) 1970; 10
Xie (ref_24) 2020; 56
(ref_9) 1982; 22
Wu (ref_22) 2016; 82
Saglam (ref_20) 2007; 28
Xue (ref_33) 2011; 270
Aslan (ref_19) 2004; 44
Arsecularatne (ref_28) 1998; 120
ref_34
Siju (ref_3) 2021; 69
Czarnota (ref_31) 2013; 213
Lai (ref_25) 2012; 108
Moufki (ref_29) 2005; 45
Hanif (ref_1) 2019; 100
Grzesik (ref_11) 1986; 26
Korkut (ref_18) 2005; 166
Osman (ref_8) 1973; 11
Chang (ref_32) 2018; 95
Zlamal (ref_2) 2019; 40
Shih (ref_21) 1995; 38
Sambhav (ref_13) 2011; 35
Young (ref_27) 1987; 201
Merchant (ref_5) 1944; 11
Hsieh (ref_12) 2010; 34
Molinari (ref_30) 2011; 53
Turan (ref_4) 2017; 378–379
Ohbuchi (ref_15) 2003; 125
Sun (ref_35) 2021; 290
ref_26
(ref_10) 1986; 26
Courbon (ref_17) 2021; 70
Stabler (ref_6) 1951; 165
ref_7
Komanduri (ref_16) 2004; 44
Menezes (ref_23) 2014; 73
References_xml – ident: ref_7
– volume: 26
  start-page: 443
  year: 1986
  ident: ref_11
  article-title: Stereometric and kinematic problems occurring during cutting with single-edged tools
  publication-title: Int. J. Mach. Tool Des. Res.
  doi: 10.1016/0020-7357(86)90034-X
– volume: 40
  start-page: 602
  year: 2019
  ident: ref_2
  article-title: The geometry of grooving tool and its influence on dynamic load system for turning
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2019.07.086
– volume: 69
  start-page: 235
  year: 2021
  ident: ref_3
  article-title: Effects of rake surface texture geometries on the performance of single-point cutting tools in hard turning of titanium alloy
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2021.07.041
– volume: 70
  start-page: 57
  year: 2021
  ident: ref_17
  article-title: A 3D modeling strategy to predict efficiently cutting tool wear in longitudinal turning of AISI 1045 steel
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2021.04.071
– volume: 95
  start-page: 243
  year: 2018
  ident: ref_32
  article-title: A new mathematical method of modeling parts in virtual CNC lathing and its application on accurate tool path generation
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1202-4
– volume: 378–379
  start-page: 58
  year: 2017
  ident: ref_4
  article-title: Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718
  publication-title: Wear
– volume: 53
  start-page: 183
  year: 2011
  ident: ref_30
  article-title: Numerical and analytical modeling of orthogonal cutting: The link between local variables and global contact characteristics
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2010.12.007
– volume: 34
  start-page: 2738
  year: 2010
  ident: ref_12
  article-title: Mathematical modeling of interrelationships among cutting angles, setting angles and working angles of single-point cutting tools
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2009.12.009
– volume: 213
  start-page: 1166
  year: 2013
  ident: ref_31
  article-title: Modeling of velocity-dependent chip flow angle and experimental analysis when machining 304L austenitic stainless steel with groove coated-carbide tools
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.01.015
– volume: 165
  start-page: 14
  year: 1951
  ident: ref_6
  article-title: The Fundamental Geometry of Cutting Tools
  publication-title: Proc. Inst. Mech. Eng.
  doi: 10.1243/PIME_PROC_1951_165_008_02
– volume: 10
  start-page: 361
  year: 1970
  ident: ref_14
  article-title: Metal cutting analyses for turning operations
  publication-title: Int. J. Mach. Tool Des. Res.
  doi: 10.1016/0020-7357(70)90018-1
– volume: 44
  start-page: 1115
  year: 2004
  ident: ref_16
  article-title: The significance of normal rake in oblique machining
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2004.02.015
– volume: 120
  start-page: 1
  year: 1998
  ident: ref_28
  article-title: Prediction of Chip Flow Direction, Cutting Forces and Surface Roughness in Finish Turning
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.2830102
– volume: 45
  start-page: 181
  year: 2005
  ident: ref_29
  article-title: A new thermomechanical model of cutting applied to turning operations
  publication-title: Part II. Parametric study. Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2004.07.005
– volume: 22
  start-page: 177
  year: 1982
  ident: ref_9
  article-title: A new method for analysing and calculating angles on cutting tools
  publication-title: Int. J. Mach. Tool Des. Res.
  doi: 10.1016/0020-7357(82)90025-7
– volume: 56
  start-page: 280
  year: 2020
  ident: ref_24
  article-title: Rake angle effect in cutting-based single atomic layer removal
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.04.068
– volume: 73
  start-page: 875
  year: 2014
  ident: ref_23
  article-title: An explicit finite element model to study the influence of rake angle and friction during orthogonal metal cutting
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-5877-5
– ident: ref_26
  doi: 10.1017/CBO9780511843723
– volume: 125
  start-page: 324
  year: 2003
  ident: ref_15
  article-title: Finite Element Modeling of Chip Formation in the Domain of Negative Rake Angle Cutting
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.1590999
– volume: 201
  start-page: 213
  year: 1987
  ident: ref_27
  article-title: Allowing for Nose Radius Effects in Predicting the Chip Flow Direction and Cutting Forces in Bar Turning
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1243/PIME_PROC_1987_201_108_02
– volume: 44
  start-page: 953
  year: 2004
  ident: ref_19
  article-title: Investigation of the effect of rake angle on main cutting force
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2004.01.015
– volume: 11
  start-page: A168
  year: 1944
  ident: ref_5
  article-title: Basic Mechanics of the Metal-Cutting Process
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4009380
– volume: 38
  start-page: 1
  year: 1995
  ident: ref_21
  article-title: Finite element analysis of the rake angle effects in orthogonal metal cutting
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(95)00036-W
– ident: ref_34
  doi: 10.3390/met10020170
– volume: 100
  start-page: 1893
  year: 2019
  ident: ref_1
  article-title: Optimization of facing process by indigenously developed force dynamometer
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-2829-5
– volume: 11
  start-page: 113
  year: 1973
  ident: ref_8
  article-title: Reference systems for cutting tool geometry and their transformation matrices
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207547308929953
– volume: 108
  start-page: 809
  year: 2012
  ident: ref_25
  article-title: Study on critical rake angle in nanometric cutting
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-012-6973-8
– volume: 28
  start-page: 101
  year: 2007
  ident: ref_20
  article-title: The effect of tool geometry and cutting speed on main cutting force and tool tip temperature
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2005.05.015
– volume: 35
  start-page: 5143
  year: 2011
  ident: ref_13
  article-title: A generic mathematical model of single point cutting tools in terms of grinding parameters
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.04.017
– volume: 26
  start-page: 99
  year: 1986
  ident: ref_10
  article-title: Graphic determination of geometric angles on metal-cutting tools
  publication-title: Int. J. Mach. Tool Des. Res.
  doi: 10.1016/0020-7357(86)90211-8
– volume: 290
  start-page: 116991
  year: 2021
  ident: ref_35
  article-title: Modeling of force and temperature in cutting of particle reinforced metal matrix composites considering particle effects
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2020.116991
– volume: 270
  start-page: 895
  year: 2011
  ident: ref_33
  article-title: Adhering layer formation and its effect on the wear of coated carbide tools during turning of a nickel-based alloy
  publication-title: Wear
  doi: 10.1016/j.wear.2011.02.018
– volume: 82
  start-page: 1941
  year: 2016
  ident: ref_22
  article-title: Experimental investigation of specific cutting energy and surface quality based on negative effective rake angle in micro turning
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7548-6
– volume: 166
  start-page: 44
  year: 2005
  ident: ref_18
  article-title: Experimental investigation of the effect of cutting tool rake angle on main cutting force
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2004.07.092
SSID ssj0000779007
Score 2.2317607
Snippet The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1207
SubjectTerms active cutting edges
Cutting force
cutting force prediction
Cutting parameters
Differential geometry
Feed rate
Geometry
Inclination angle
machining
Mathematical models
Rake angle
turning
Turning (machining)
turning geometry
Velocity
working normal rake angle
Workpieces
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTu2hanmItICMyoVDRGLHeRwDYoWQukKIlbhFtjMuK7ZZtOz-kf7izjjZkEiVeuGamUSJZ-z5Jh5_w9iZsrbOoaZjv7EKExXpUINCX1ZSgcX4bfxG-89pejNLbh_V46DVF9WEtfTA7cBdCBelOjK1SRwGO-UKqRIpiSYsNSbyJ6gFxrxBMuXXYKLRi7KWj1RiXn_xe05UWbGgvrGDCOSJ-kfoclwbOQg2ky_sc4cSedm-3Vf2AZpd9mnAHbjH_pTWbojngVM7MzpUzpeOd_---ZSg6ILf62fgZfNrAa9cN3UvxlWBDuKSUbZivLn0ax-_2vhaaH5N_A_-tvJtl5vPm15hslxZ4Hcr2ush2T6bTa4frm7CrsFCaJOkWIeFw_QPaA6LuhB16mwdKy3S3CAKqK1G6JfZKLbCOCjS3MXOGCuEAydBmNjJA7bTLBs4ZNzGYBWmbhbyPAGQeaYLl6QuKvIYdKQCdr4d9Mp27OPUBGNRYRZCBqreDBSwH73uS8u58U-tS7Jdr0E82f4Cek_VeU_1P-8J2NHW8lU3eV8rgaDMd14vAnbai3Ha0V6KbmC5aXUyRKtCBiwbeczohcaSZv7kCbwRIuHD5bf3-ILv7KOgMhtfX3jEdtarDRwjTlqbEz8l_gIushKL
  priority: 102
  providerName: Directory of Open Access Journals
Title Accurate Modeling of Working Normal Rake Angles and Working Inclination Angles of Active Cutting Edges and Application in Cutting Force Prediction
URI https://www.proquest.com/docview/2584452699
https://www.proquest.com/docview/2584785123
https://pubmed.ncbi.nlm.nih.gov/PMC8536993
https://doaj.org/article/2f06a0bdb4f7435f93543342836bb031
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfY9gIPiE8RGJURvPAQLbHjNHlC2dQyIVFNE5P2FtnOeVQryejHP8JfzJ3rpo2EeO1d2ipnn3_34d8x9klZ2xTQ0LXfVMWZSnSsQeFaVlKBxfPb-EL791l-eZN9u1W3IeG2Cm2VO5_oHXXTWcqRnwk8Kf047PLLw--YpkZRdTWM0DhiJ-iCCwy-Ts4ns6vrPsuSEJ1eMt7ykkqM789-zYkyKxU0P_bgJPKE_QOUOeyRPDh0ps_Y04AWebU173P2CNoX7MkBh-BL9qeydkN8D5zGmtHlct45HnLgfEaQdMGv9T3wqr1bwIrrtunF6B3oQi4ZZyfGhyvvA_nFxvdE8wnxQPjHqn21m8_bXmHaLS3wqyXVfEj2it1MJz8uLuMwaCG2WVau49JhGAi0l0VTiiZ3tkmVFnlhEA00ViMEHNsktcI4KPPCpc4YK4QDJ0GY1MnX7LjtWnjDuE3BKgzhLBRFBiCLsS5dlrukLFLQiYrY591Lr21gIadhGIsaoxEyUL03UMQ-9roPW-6Nf2qdk-16DeLL9h90y7s6bL9auCTXiWlM5hAyKVdKlUlJZHO5MejXIna6s3wdNvGq3i-5iH3oxbj9qKaiW-g2W50xolYhIzYerJjBHxpK2vlPT-SNUAm_XL79_4-_Y48FNdL4DsJTdrxebuA9IqG1GbGjYvp1FBb9yOcT_gLo2Q6H
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcIFDACDhyiJk6cxwGhULpsabtCqJV6S2PHLiuWpOxDiL_BD-E3MuM8diMhbr3uTLKrnc8zY8_4G4BXQqky0SVd-_WFGwqvcAstEMsiEFph_Ja20H48ican4aczcbYFf7q7MNRW2flE66jLWtEZ-S7HSGnHYafvLn-4NDWKqqvdCI0GFof610_csi3eHnxA-77mfLR_sjd226kCrgrDdOmmBvc8moDLy5SXkVGlLwoeJRJDX6kKzHdi5fmKS6PTKDG-kVJxbrQJNJe-CfC91-B6GAQprahk9LE_0_GIvM-LGxZUlHu736dE0OVzmla7EffseIBBTjvsyNwIcaM7cLvNTVnWgOkubOnqHtzaYCy8D78zpVbELsFoiBpdZWe1Ye2JO5tQAjxjX4pvmmXVxUwvWFGVvRh9EV3_JSh0Ynw4sx6X7a1sBzbbJ9YJ-1i2rq2zadUrjOq50uzznCpMJHsAp1digIewXdWVfgRM-VoJ3DAqnSSh1kESF6kJI-Olia8LTzjwpvvTc9VyntPojVmOex8yUL42kAMve93Lhunjn1rvyXa9BrFz2w_q-UXeLvacGy8qPFnK0GCCJkwaCIQLUdtFUqIXdWCns3zeuoxFvga4Ay96MS52quAUla5XjU6MOTIPHIgHiBn8oKGkmn61tOGYmOHLg8f___LncGN8cnyUHx1MDp_ATU4tPLZ3cQe2l_OVfoo52FI-s8BncH7VK-0vTOtJXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoFFwIGDFXvX68cBobRN1FKIoopKvRnverdEpHbJQ4i_wc_h1zHjV2IJcevVM37IMzuPndlvAN5IrbPIZHTs15OOL93USY1EXZZCGo3-W5WF9s-T4Pjc_3ghL3bgT3MWhtoqG5tYGuqs0LRHPuDoKctx2PHA1m0R06Pxh-sfDk2QokprM06jUpFT8-snpm_L9ydHKOu3nI9HXw6PnXrCgKN9P145scX8x5AS8yzmWWB15smUB5FCN5jpFGOfULue5sqaOIisZ5XSnFtjheHKswKfewt2Q8yK3B7sHowm07N2h8clKD83rDBRhYjdwdWM4Lo8TrNrt7xgOSygE-F2-zO3HN74PtyrI1U2rFTrAeyY_CHc3cIvfAS_h1qvCWuC0Ug1OtjOCsvq_Xc2oXB4zs7S74YN88u5WbI0z1oyWiY6DEyK0ZDx5mFpf9nhuuzHZiPCoChvG24q7WyWtwzjYqENmy6o3kS0x3B-IyJ4Ar28yM1TYNozWmL6qE0U-caIKExj6wfWjSPPpK7sw7vmpye6RkCnQRzzBDMhElCyEVAfXre81xXuxz-5Dkh2LQdhdZcXisVlUi_9hFs3SF2VKd9iuCZtLKQvBAHdBUqhTe3DfiP5pDYgy2Sj7n141ZJx6VM9J81Nsa54QoyYuehD2NGYzgd1KfnsWwkijmEaPlzs_f_lL-E2rrLk08nk9Bnc4dTPUzYy7kNvtVib5xiQrdSLWvMZfL3pxfYXws9O7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Modeling+of+Working+Normal+Rake+Angles+and+Working+Inclination+Angles+of+Active+Cutting+Edges+and+Application+in+Cutting+Force+Prediction&rft.jtitle=Micromachines+%28Basel%29&rft.au=Li%2C+Peng&rft.au=Chang%2C+Zhiyong&rft.date=2021-10-01&rft.pub=MDPI&rft.eissn=2072-666X&rft.volume=12&rft.issue=10&rft_id=info:doi/10.3390%2Fmi12101207&rft_id=info%3Apmid%2F34683258&rft.externalDocID=PMC8536993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon