Accurate Modeling of Working Normal Rake Angles and Working Inclination Angles of Active Cutting Edges and Application in Cutting Force Prediction

The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cut...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 12; no. 10; p. 1207
Main Authors Li, Peng, Chang, Zhiyong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The normal rake angle is an important geometric parameter of a turning tool, and it directly affects the accuracy of the cutting force prediction. In this study, an accurate model of the working normal rake angle (WNRA) and working inclination angle (WIA) is presented, including variation in the cutting velocity direction. The active cutting edge of the turning tool is discretized into differential elements. Based on the geometric size of the workpiece and the position of the differential elements, the cutting velocity direction of each differential element is calculated, and analytical expressions for the WNRA, WIA, and working side cutting edge angle are obtained for each differential element. The size of the workpiece is found to exert an effect on the WNRA and WIA of the turning tool. The WNRA and WIA are used to predict the cutting force. A good agreement between the predicted and experimental results from a series of turning experiments on GH4169 with different cutting parameters (cutting depth and feed rate) demonstrates that the proposed model is accurate and effective. This research provides theoretical guidelines for high-performance machining.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12101207