Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes

Presents a technique to directly excite Luttinger liquid collective modes in carbon nanotubes at gigahertz frequencies. By modeling the nanotube as a nano-transmission line with distributed kinetic and magnetic inductance as well as distributed quantum and electrostatic capacitance, we calculate the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nanotechnology Vol. 1; no. 3; pp. 129 - 144
Main Author Burke, P.J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Presents a technique to directly excite Luttinger liquid collective modes in carbon nanotubes at gigahertz frequencies. By modeling the nanotube as a nano-transmission line with distributed kinetic and magnetic inductance as well as distributed quantum and electrostatic capacitance, we calculate the complex frequency-dependent impedance for a variety of measurement geometries. Exciting voltage waves on the nano-transmission line is equivalent to directly exciting the yet-to-be observed one-dimensional plasmons, the low energy excitation of a Luttinger liquid. Our technique has already been applied to two-dimensional plasmons and should work well for one-dimensional plasmons. Tubes of length 100 microns must be grown for gigahertz resonance frequencies. Ohmic contact is not necessary with our technique; capacitive contacts can work. Our modeling has applications in potentially terahertz nanotube transistors and RF nanospintronics.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2002.806823