Process and temperature compensation in a 7-MHz CMOS clock oscillator

This paper reports on the design and characterization of a process, temperature and supply compensation technique for a 7-MHz clock oscillator in a 0.25-/spl mu/m, two-poly five-metal (2P5M) CMOS process. Measurements made across a temperature range of -40/spl deg/C to 125/spl deg/C and 94 samples c...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 41; no. 2; pp. 433 - 442
Main Authors Sundaresan, K., Allen, P.E., Ayazi, F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper reports on the design and characterization of a process, temperature and supply compensation technique for a 7-MHz clock oscillator in a 0.25-/spl mu/m, two-poly five-metal (2P5M) CMOS process. Measurements made across a temperature range of -40/spl deg/C to 125/spl deg/C and 94 samples collected over four fabrication runs indicate a worst case combined variation of /spl plusmn/2.6% (with process, temperature and supply). No trimming was performed on any of these samples. The oscillation frequencies of 95% of the samples were found to fall within /spl plusmn/0.5% of the mean frequency and the standard deviation was 9.3 kHz. The variation of frequency with power supply was /spl plusmn/0.31% for a supply voltage range of 2.4-2.75 V. The clock generator is based on a three-stage differential ring oscillator. The variation of the frequency of the oscillator with temperature and process has been discussed and an adaptive biasing scheme incorporating a unique combination of a process corner sensing scheme and a temperature compensating network is developed. The biasing circuit changes the control voltage of the differential ring oscillator to maintain a constant frequency. A comparator included at the output stage ensures rail-to-rail swing. The oscillator is intended to serve as a start-up clock for micro-controller applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2005.863149