Combined effects of polymorphisms of DNA-repair protein genes and metabolic enzyme genes on the risk of cholangiocarcinoma
Although Opisthorchis viverrini is a risk factor for cholangiocarcinoma, not all the infected individuals develop cholangiocarcinoma. We investigated whether the base excision repair enzyme gene polymorphisms with differentiated repair capacities of inflammation-related deoxyribonucleic acid damage...
Saved in:
Published in | Japanese journal of clinical oncology Vol. 43; no. 12; pp. 1190 - 1194 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Although Opisthorchis viverrini is a risk factor for cholangiocarcinoma, not all the infected individuals develop cholangiocarcinoma. We investigated whether the base excision repair enzyme gene polymorphisms with differentiated repair capacities of inflammation-related deoxyribonucleic acid damage may play a key role and such possible effects from those genes may be increased or diminished in co-existence of polymorphisms of metabolic enzymes, including glutathione-S-transferases mu 1 and glutathione-S-transferases θ1.
We genotyped five non-synonymous single-nucleotide polymorphisms of three genes, including the human homolog of the 8-oxoguanine glycosylase 1 Ser326Cys, X-ray repair cross-complementing protein 1 Arg194Trp, Arg280His and Arg399Gln and poly (adenosine diphosphate ribose) polymerase 1 Val762Ala in 87-94 matched case-control pairs, and examined relations between those polymorphisms and the risk of cholangiocarcinoma.
Any single polymorphism did not have a measurable association with the risk of cholangiocarcinoma. However, when considering glutathione-S-transferases mu 1 polymorphism together, the human homolog of the 8-oxoguanine glycosylase 1 codon 326 polymorphism was related to the decreased risk; odds ratios were 1.00 (reference), 0.06 (95% confidence interval 0.01-0.53), 0.06 (0.01-0.54) and 0.14 (0.02-1.08) for persons with human homolog of the 8-oxoguanine glycosylase 1 Ser/Ser and glutathione-S-transferases mu 1 wild, ones with Ser/Ser and glutathione-S-transferases mu 1 null, ones with Ser/Cys or Cys/Cys and glutathione-S-transferases mu 1 wild and ones with Ser/Cys or Cys/Cys and glutathione-S-transferases mu 1 null, respectively (P for interaction <0.01). Further adjustment for the presence of anti-Opisthorchis viverrini antibody, smoking and alcohol drinking did not change the decreased risk. Other combinations of deoxyribonucleic acid-repair gene polymorphism and glutathione-S-transferases were not associated with the risk of cholangiocarcinoma.
The present findings suggested that decreased capacity of deoxyribonucleic acid-repair gene, human homolog of the 8-oxoguanine glycosylase 1, may be related to decreased risk if much damaged cells die before malignant transformation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0368-2811 1465-3621 |
DOI: | 10.1093/jjco/hyt138 |