A Simulation and an Experimental Study of Space Harpoon Low-Velocity Impact, Anchored Debris

The space harpoon is a rigid-flexible, coupled debris capture method with a simple, reliable structure and a high adaptability to the target. For the process of impacting and embedding the harpoon into the target plate, the effect of friction at a low-velocity impact is studied, and the criteria for...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 14; p. 5041
Main Authors Zhao, Wei, Pang, Zhaojun, Zhao, Zhen, Du, Zhonghua, Zhu, Weiliang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The space harpoon is a rigid-flexible, coupled debris capture method with a simple, reliable structure and a high adaptability to the target. For the process of impacting and embedding the harpoon into the target plate, the effect of friction at a low-velocity impact is studied, and the criteria for effective embedding of the harpoon and the corresponding launch velocity are determined. A simulation model of the dynamics of the harpoon and the target plate considering tangential friction is established, and the reliability of the numerical simulation model is verified by comparing the impact test, focusing on the kinetic energy change and embedding length during the impact of the harpoon. The results show that the frictional effect in the low-velocity impact is more obvious for the kinetic energy consumption of the harpoon itself, and the effective embedding of the harpoon into the anchored target ranges from 50~90 mm, corresponding to a theoretical launch initial velocity between 88.4~92.5 m/s.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15145041