Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes
The design and characterization of an imaging system is presented for depth information capture of arbitrary three-dimensional (3-D) objects. The core of the system is an array of 32 /spl times/ 32 rangefinding pixels that independently measure the time-of-flight of a ray of light as it is reflected...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 40; no. 9; pp. 1847 - 1854 |
---|---|
Main Authors | , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
New York, NY
IEEE
01.09.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The design and characterization of an imaging system is presented for depth information capture of arbitrary three-dimensional (3-D) objects. The core of the system is an array of 32 /spl times/ 32 rangefinding pixels that independently measure the time-of-flight of a ray of light as it is reflected back from the objects in a scene. A single cone of pulsed laser light illuminates the scene, thus no complex mechanical scanning or expensive optical equipment are needed. Millimetric depth accuracies can be reached thanks to the rangefinder's optical detectors that enable picosecond time discrimination. The detectors, based on a single photon avalanche diode operating in Geiger mode, utilize avalanche multiplication to enhance light detection. On-pixel high-speed electrical amplification can therefore be eliminated, thus greatly simplifying the array and potentially reducing its power dissipation. Optical power requirements on the light source can also be significantly relaxed, due to the array's sensitivity to single photon events. A number of standard performance measurements, conducted on the imager, are discussed in the paper. The 3-D imaging system was also tested on real 3-D subjects, including human facial models, demonstrating the suitability of the approach. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2005.848173 |