Evidence that a burst of DNA depurination in SENCAR mouse skin induces error-prone repair and forms mutations in the H-ras gene

Treatment of SENCAR mouse skin with dibenzo[a,l]pyrene results in abundant formation of abasic sites that undergo error-prone excision repair, forming oncogenic H-ras mutations in the early preneoplastic period. To examine whether the abundance of abasic sites causes repair infidelity, we treated SE...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 20; no. 55; pp. 7945 - 7953
Main Authors CHAKRAVARTI, Dhrubajyoti, MAILANDER, Paula C, LI, Kai-Ming, HIGGINBOTHAM, Sheila, ZHANG, Henry L, GROSS, Michael L, MEZA, Jane L, CAVALIERI, Ercole L, ROGAN, Eleanor G
Format Journal Article
LanguageEnglish
Published Basingstoke Nature Publishing 29.11.2001
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Treatment of SENCAR mouse skin with dibenzo[a,l]pyrene results in abundant formation of abasic sites that undergo error-prone excision repair, forming oncogenic H-ras mutations in the early preneoplastic period. To examine whether the abundance of abasic sites causes repair infidelity, we treated SENCAR mouse skin with estradiol-3,4-quinone (E(2)-3,4-Q) and determined adduct levels 1 h after treatment, as well as mutation spectra in the H-ras gene between 6 h and 3 days after treatment. E(2)-3,4-Q formed predominantly (> or =99%) the rapidly-depurinating 4-hydroxy estradiol (4-OHE(2))-1-N3Ade adduct and the slower-depurinating 4-OHE(2)-1-N7Gua adduct. Between 6 h and 3 days, E(2)-3,4-Q induced abundant A to G mutations in H-ras DNA, frequently in the context of a 3'-G residue. Using a T.G-DNA glycosylase (TDG)-PCR assay, we determined that the early A to G mutations (6 and 12 h) were in the form of G.T heteroduplexes, suggesting misrepair at A-specific depurination sites. Since G-specific mutations were infrequent in the spectra, it appears that the slow rate of depurination of the N7Gua adducts during active repair may not generate a threshold level of G-specific abasic sites to affect repair fidelity. These results also suggest that E(2)-3,4-Q, a suspected endogenous carcinogen, is a genotoxic compound and could cause mutations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1204969