Deep Reactive Ion Etching of Z-Cut Alpha Quartz for MEMS Resonant Devices Fabrication
Quartz is widely used in microelectromechanical systems (MEMS). Especially, MEMS quartz resonators are applied to sensors and serve as sensitive elements. The capability of deep etching is a limitation for the application. Presented in this paper is a deep and high accuracy reactive ion etching meth...
Saved in:
Published in | Micromachines (Basel) Vol. 11; no. 8; p. 724 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
26.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Quartz is widely used in microelectromechanical systems (MEMS). Especially, MEMS quartz resonators are applied to sensors and serve as sensitive elements. The capability of deep etching is a limitation for the application. Presented in this paper is a deep and high accuracy reactive ion etching method applied to a quartz resonator etching process with a Cr mask. In order to enhance the capability of deep etching and machining accuracy, three kinds of etching gas (C4F8/Ar, SF6/Ar and SF6/C4F8/Ar), bias power, inductively coupled plasma (ICP) power and chamber pressure were studied in an industrial reactive ion etching machine (GDE C200). Results indicated that the SF6/C4F8/Ar chemistry gas is the suitable and optimal choice. Experiment results indicate that Cr (chromium) mask can obtain a higher selectivity than aluminum and titanium mask. A “sandwich” structure composed of Al layer-Cr layer-Al layer-Cr layer was proposed. The Al (aluminum) film can play the role of releasing stress and protecting gold electrodes, which can enhance the thickness of metal mask. An optimized process using SF6/C4F8/Ar plasmas showed the quartz etching rate of 450 nm/min. Meanwhile, a microchannel with a depth of 75.4 µm is fabricated, and a nearly vertical sidewall profile, smooth surface is achieved. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi11080724 |