Discrete Element Modeling and Electron Microscopy Investigation of Fatigue-Induced Microstructural Changes in Ultra-High-Performance Concrete

In view of the growing demand for sustainable and lightweight concrete structures, the use of ultra-high-performance concrete (UHPC) is becoming increasingly important. However, fatigue loads occur more frequently in nature than static loads. Despite the impressive mechanical properties of UHPC, a r...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 21; p. 6337
Main Authors Rybczynski, Sebastian, Schaan, Gunnar, Dosta, Maksym, Ritter, Martin, Schmidt-Döhl, Frank
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.10.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In view of the growing demand for sustainable and lightweight concrete structures, the use of ultra-high-performance concrete (UHPC) is becoming increasingly important. However, fatigue loads occur more frequently in nature than static loads. Despite the impressive mechanical properties of UHPC, a reduced tolerance for cyclic loading is known. For this reason, our paper deals with experimental and numerical investigations regarding the main causes for crack initiation on the meso, micro, and nanoscale. After mechanical fatigue tests, we use both scanning (SEM) and transmission electron microscopy (TEM) to characterize microstructural changes. A new rheological model was developed to apply those changes to the mesoscopic scale. The origins of fatigue damaging can be traced back to a transformation of nanoscale ettringite, resulting in a densification of the surrounding binder matrix. Additionally, a higher content of unhydrated cement clinker in the matrix benefits fatigue resistance. On the mesoscale, stress peaks around aggregate grains expand into the surrounding binder with increasing load cycles and lead to higher degradation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14216337