A Systematic Study on Bio-Based Hybrid Aerogels Made of Tannin and Silica

Tannin-silica hybrid materials are expected to feature excellent mechanic-chemical stability, large surface areas, high porosity and possess, after carbothermal reduction, high thermal stability as well as high thermal conductivity. Typically, a commercially available tetraethoxysilane is used, but...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 18; p. 5231
Main Authors Koopmann, Ann-Kathrin, Malfait, Wim J., Sepperer, Thomas, Huesing, Nicola
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 11.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tannin-silica hybrid materials are expected to feature excellent mechanic-chemical stability, large surface areas, high porosity and possess, after carbothermal reduction, high thermal stability as well as high thermal conductivity. Typically, a commercially available tetraethoxysilane is used, but in this study, a more sustainable route was developed by using a glycol-based silica precursor, tetrakis(2-hydroxyethyl)orthosilicate (EGMS), which is highly water-soluble. In order to produce highly porous, homogeneous hybrid tannin-silica aerogels in a one-pot approach, a suitable crosslinker has to be used. It was found that an aldehyde-functionalized silane (triethoxysilylbutyraldehyde) enables the covalent bonding of tannin and silica. Solely by altering the processing parameters, distinctly different tannin-silica hybrid material properties could be achieved. In particular, the amount of crosslinker is a significant factor with respect to altering the materials’ properties, e.g., the specific surface area. Notably, 5 wt% of crosslinker presents an optimal percentage to obtain a sustainable tannin-silica hybrid system with high specific surface areas of roughly 800–900 m2 g−1 as well as a high mesopore volume. The synthesized tannin-silica hybrid aerogels permit the usage as green precursor for silicon carbide materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14185231