AMPK negatively regulates RANKL-induced osteoclast differentiation by controlling oxidative stress

AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to c...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 205; pp. 107 - 115
Main Authors Tanaka, Miori, Inoue, Hirofumi, Takahashi, Nobuyuki, Uehara, Mariko
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases. [Display omitted] •AMPK knockdown promoted RANKL-induced osteoclast differentiation, osteoclastic gene expression, and MAPK/NF-κB activation in RAW 264.7 cells.•AMPK knockdown led to defective synthesis of HO-1 and Nrf2.•NAC abolished osteoclast formation and MAPK/NF-κB activation induced by AMPK knockdown.•Several phytochemicals suppressed osteoclast differentiation via AMPK.
AbstractList AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases.AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases.
AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases. [Display omitted] •AMPK knockdown promoted RANKL-induced osteoclast differentiation, osteoclastic gene expression, and MAPK/NF-κB activation in RAW 264.7 cells.•AMPK knockdown led to defective synthesis of HO-1 and Nrf2.•NAC abolished osteoclast formation and MAPK/NF-κB activation induced by AMPK knockdown.•Several phytochemicals suppressed osteoclast differentiation via AMPK.
AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases.
Author Inoue, Hirofumi
Uehara, Mariko
Tanaka, Miori
Takahashi, Nobuyuki
Author_xml – sequence: 1
  givenname: Miori
  surname: Tanaka
  fullname: Tanaka, Miori
  organization: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
– sequence: 2
  givenname: Hirofumi
  surname: Inoue
  fullname: Inoue, Hirofumi
  organization: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
– sequence: 3
  givenname: Nobuyuki
  surname: Takahashi
  fullname: Takahashi, Nobuyuki
  organization: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
– sequence: 4
  givenname: Mariko
  orcidid: 0000-0003-0402-0968
  surname: Uehara
  fullname: Uehara, Mariko
  email: mari@nodai.ac.jp
  organization: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37270032$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAYRS1URKeFv4AssWGT4FfiRKxGVXmow0MI1pZjfx555LGL7VTMvyfTaRew6sqSde-xfM8FOospAkJvKGkpof27XesyQNZ28mkPtmWE8ZZ0LeH8GVrRQfJGdGN_hlZkGGnTDWI8Rxel7AghouPDC3TOJZOEcLZC0_rL9xscYaurv4NwwBm2c9AVCv6x_nqzaXy0swGLU6mQTNClYuudgwyx-qWUIp4O2KRYcwrBxy1Of7y9p-FSM5TyEj13OhR49XBeol8frn9efWo23z5-vlpvGiPEWBsuej5NZLCUUr3cDFZPnZtGSRwj1MqRy55KPhgNkhPJe2FG0zsOEwUnBOGX6O2Je5vT7xlKVXtfDISgI6S5KDYwxmXH2DH6-iE6T8uE6jb7vc4H9bjLElifAianUjI4ZXy9_23N2gdFiTq6UDv1jwt1dKFIpxYXC-P9f4zHZ57Wvj61YZnszkNWxXiIiwqfwVRlk38S5y9Iqa6v
CitedBy_id crossref_primary_10_3389_fgene_2024_1346367
crossref_primary_10_1016_j_psj_2024_103442
crossref_primary_10_1186_s13018_025_05544_2
crossref_primary_10_1177_1934578X251323393
crossref_primary_10_3390_nu16193379
crossref_primary_10_1111_eos_12955
crossref_primary_10_4327_jsnfs_77_117
crossref_primary_10_1016_j_ijbiomac_2024_134882
crossref_primary_10_3390_ijms25137269
Cites_doi 10.1038/nrd3669
10.1038/nm1593
10.1016/j.bbrc.2016.12.075
10.11005/jbm.2014.21.4.233
10.1073/pnas.95.23.13453
10.1096/fj.05-4278fje
10.1016/j.bbrc.2010.09.053
10.1007/s00774-020-01162-6
10.1002/jcb.23242
10.1016/j.mam.2011.10.006
10.1016/j.bone.2010.08.001
10.1007/s00109-011-0748-0
10.5115/acb.2011.44.3.194
10.1172/JCI114485
10.1186/s12906-020-03014-2
10.1016/j.bbrc.2004.09.177
10.1016/j.freeradbiomed.2015.03.030
10.1128/MCB.00118-16
10.3389/fphar.2018.01028
10.1016/S0092-8674(00)00116-1
10.3390/nu12051479
10.1038/s41413-021-00142-4
10.1038/nrm3311
10.1002/jbmr.5650100413
10.1359/jbmr.2000.15.1.103
10.1084/jem.20050645
10.1093/jn/133.6.1892
10.1677/JOE-08-0568
10.1210/me.2007-0237
10.1152/ajpendo.90677.2008
10.3109/s10165-006-0524-0
10.1002/jcb.28504
10.1002/ptr.5001
10.1084/jem.20051150
10.1074/jbc.M505815200
10.1074/jbc.M408795200
10.1371/journal.pone.0261127
10.1002/jbmr.1575
10.1007/s00011-021-01484-9
10.1016/S1534-5807(02)00369-6
10.1242/dev.122.10.3151
10.1146/annurev-pathol-011110-130203
10.1074/jbc.M112.430389
10.1111/j.0105-2896.2009.00857.x
10.1210/en.2004-1021
10.1074/jbc.M111883200
10.1097/WOX.0b013e3182439613
10.1155/2018/9364364
10.1038/nature10763
10.1182/blood-2004-09-3662
10.1089/ars.2012.5149
10.1074/jbc.271.2.611
10.1002/jcb.23372
10.1172/JCI11176
10.1359/jbmr.2001.16.8.1444
10.1155/2015/615486
10.4172/2167-7689.1000118
10.1016/j.gene.2009.06.013
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.freeradbiomed.2023.05.033
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 115
ExternalDocumentID 37270032
10_1016_j_freeradbiomed_2023_05_033
S0891584923004744
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
~G-
.GJ
.HR
29H
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
R2-
RIG
SBG
WUQ
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c449t-3463bb08d111a4498dab5fb970f201d793761738cae7307364c9c6f3eb1ef4403
IEDL.DBID .~1
ISSN 0891-5849
1873-4596
IngestDate Sun Aug 24 03:49:24 EDT 2025
Wed Feb 19 02:15:17 EST 2025
Thu Apr 24 22:53:04 EDT 2025
Tue Jul 01 01:11:48 EDT 2025
Fri Feb 23 02:35:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxidative stress
DC-STAMP
MCP-1
RANKL
JNK
Ctsk
Osteoclast
HO-1
NFATc1
TRAP
OC-STAMP
MAPK
OSCAR
Cell-fusion
NF-κB
Phytochemicals
TNF-α
Nrf2
ROS
AMPK
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-3463bb08d111a4498dab5fb970f201d793761738cae7307364c9c6f3eb1ef4403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0402-0968
PMID 37270032
PQID 2822375220
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2822375220
pubmed_primary_37270032
crossref_citationtrail_10_1016_j_freeradbiomed_2023_05_033
crossref_primary_10_1016_j_freeradbiomed_2023_05_033
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2023_05_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-20
PublicationDateYYYYMMDD 2023-08-20
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Miyamoto (bib33) 2006; 16
Guo, Ding, Wang, Yan (bib49) 2021; 16
Lee, Kim, Lee, Kim (bib25) 2010; 47
Garrett, Boyce, Oreffo, Bonewald (bib15) 1990; 85
Asagiri, Sato, Usami, Ochi (bib41) 2005; 202
Zhang, Tang, Liu, Song (bib50) 2018; 9
Saftig, Hunziker, Wehmeyer, Jones (bib30) 1998; 95
Tanaka, Kishimoto, Sasaki, Sato (bib53) 2018; 2018
Reddy, Hundley, Windle, Alcantara (bib35) 1995; 10
Davis (bib40) 2000; 103
Lee, Choi, Baik, Han (bib16) 2005; 106
Kim, Lee, Ha Kim, Choi, Kim (bib37) 2008; 22
Tanaka, Sato, Kishimoto, Mabashi-Asazuma (bib54) 2020; 12
Cacicedo, Yagihashi, Keaney, Ruderman, Ido (bib43) 2004; 324
Lam, Takeshita, Barker, Kanagawa (bib11) 2000; 106
Kodama, Kaito (bib31) 2020
Kim, Kim (bib9) 2014; 21
Liang, Xue, Wang, Xie (bib58) 2020; 20
Chiba, Uehara, Wu, Wang (bib51) 2003; 133
Zaidi (bib1) 2007; 13
Joo, Kim, Lee, Kim (bib19) 2016; 36
Ferbebouh, Vallieres, Benderdour, Fernandes (bib8) 2021; 70
Hardy, Cooper (bib6) 2009; 201
Zwerina, Tzima, Hayer, Redlich (bib46) 2005; 19
Kim, Ke, Sul, Kim (bib57) 2011; 112
Kiviranta, Morko, Uusitalo, Aro (bib28) 2001; 16
Kanazawa, Yamaguchi, Yano, Yamauchi, Sugimoto (bib23) 2009; 296
Balkan, Martinez, Fernandez, Rodriguez (bib36) 2009; 446
Pang, Rodriguez-Gonzalez, Hernandez, Recinos (bib42) 2019; 120
Feng, McDonald (bib2) 2011; 6
Zhou, Guo, Xiao, Guo (bib21) 2021; 9
Matsumoto, Kogawa, Wada, Takayanagi (bib39) 2004; 279
Hybertson, Gao, Bose, McCord (bib45) 2011; 32
Zimmermann, Baldinger, Mayerhofer, Atanasov (bib20) 2015; 88
He, Andersson, Lindgren, Li (bib56) 2010; 401
Hienz, Paliwal, Ivanovski (bib4) 2015; 2015
Udagawa, Koide, Nakamura, Nakamichi (bib7) 2021; 39
Hardie, Ross, Hawley (bib17) 2012; 13
Chiba, Kim, Matsumoto, Akiyama (bib52) 2014; 28
Hayman, Jones, Boyde, Foster (bib29) 1996; 122
Yi, Jeon, Shin, Jeong (bib55) 2011; 44
Lean, Jagger, Kirstein, Fuller, Chambers (bib44) 2005; 146
Goodman, Liu, Zhu, Li (bib48) 2014; 3
Takagi, Inoue, Takahashi, Katsumata-Tsuboi, Uehara (bib59) 2017; 483
Stapleton, Mitchelhill, Gao, Widmer (bib26) 1996; 271
Walsh, Gravallese (bib3) 2010; 233
Hsu, Wen (bib13) 2002; 277
Birben, Sahiner, Sackesen, Erzurum, Kalayci (bib14) 2012; 5
Mittal, Siddiqui, Tran, Reddy, Malik (bib12) 2014; 20
Angel, Walsh, Forwood, Ostrowski (bib27) 2000; 15
Yagi, Miyamoto, Sawatani, Iwamoto (bib32) 2005; 202
Kang, Viollet, Wu (bib24) 2013; 288
Takayanagi, Kim, Koga, Nishina (bib10) 2002; 3
Kim, Kim, Lee, Jin (bib38) 2005; 280
Salminen, Hyttinen, Kaarniranta (bib18) 2011; 89
Redlich, Smolen (bib5) 2012; 11
Karsenty, Ferron (bib22) 2012; 481
Miyamoto, Suzuki, Miyauchi, Iwasaki (bib34) 2012; 27
Sakai, Shimada-Sugawara, Nishishita, Fukuma (bib47) 2012; 113
Kim (10.1016/j.freeradbiomed.2023.05.033_bib37) 2008; 22
Miyamoto (10.1016/j.freeradbiomed.2023.05.033_bib34) 2012; 27
Kodama (10.1016/j.freeradbiomed.2023.05.033_bib31) 2020
Liang (10.1016/j.freeradbiomed.2023.05.033_bib58) 2020; 20
Zhang (10.1016/j.freeradbiomed.2023.05.033_bib50) 2018; 9
Lee (10.1016/j.freeradbiomed.2023.05.033_bib25) 2010; 47
Takagi (10.1016/j.freeradbiomed.2023.05.033_bib59) 2017; 483
Guo (10.1016/j.freeradbiomed.2023.05.033_bib49) 2021; 16
Joo (10.1016/j.freeradbiomed.2023.05.033_bib19) 2016; 36
Tanaka (10.1016/j.freeradbiomed.2023.05.033_bib54) 2020; 12
Karsenty (10.1016/j.freeradbiomed.2023.05.033_bib22) 2012; 481
Zaidi (10.1016/j.freeradbiomed.2023.05.033_bib1) 2007; 13
Lean (10.1016/j.freeradbiomed.2023.05.033_bib44) 2005; 146
Lam (10.1016/j.freeradbiomed.2023.05.033_bib11) 2000; 106
Kim (10.1016/j.freeradbiomed.2023.05.033_bib57) 2011; 112
Lee (10.1016/j.freeradbiomed.2023.05.033_bib16) 2005; 106
Kiviranta (10.1016/j.freeradbiomed.2023.05.033_bib28) 2001; 16
Takayanagi (10.1016/j.freeradbiomed.2023.05.033_bib10) 2002; 3
Kim (10.1016/j.freeradbiomed.2023.05.033_bib9) 2014; 21
Garrett (10.1016/j.freeradbiomed.2023.05.033_bib15) 1990; 85
Pang (10.1016/j.freeradbiomed.2023.05.033_bib42) 2019; 120
Zimmermann (10.1016/j.freeradbiomed.2023.05.033_bib20) 2015; 88
Kanazawa (10.1016/j.freeradbiomed.2023.05.033_bib23) 2009; 296
Yagi (10.1016/j.freeradbiomed.2023.05.033_bib32) 2005; 202
Angel (10.1016/j.freeradbiomed.2023.05.033_bib27) 2000; 15
Kim (10.1016/j.freeradbiomed.2023.05.033_bib38) 2005; 280
Mittal (10.1016/j.freeradbiomed.2023.05.033_bib12) 2014; 20
Hsu (10.1016/j.freeradbiomed.2023.05.033_bib13) 2002; 277
Ferbebouh (10.1016/j.freeradbiomed.2023.05.033_bib8) 2021; 70
Udagawa (10.1016/j.freeradbiomed.2023.05.033_bib7) 2021; 39
Asagiri (10.1016/j.freeradbiomed.2023.05.033_bib41) 2005; 202
Davis (10.1016/j.freeradbiomed.2023.05.033_bib40) 2000; 103
Reddy (10.1016/j.freeradbiomed.2023.05.033_bib35) 1995; 10
Feng (10.1016/j.freeradbiomed.2023.05.033_bib2) 2011; 6
Hardy (10.1016/j.freeradbiomed.2023.05.033_bib6) 2009; 201
Salminen (10.1016/j.freeradbiomed.2023.05.033_bib18) 2011; 89
Birben (10.1016/j.freeradbiomed.2023.05.033_bib14) 2012; 5
Hardie (10.1016/j.freeradbiomed.2023.05.033_bib17) 2012; 13
Hienz (10.1016/j.freeradbiomed.2023.05.033_bib4) 2015; 2015
Walsh (10.1016/j.freeradbiomed.2023.05.033_bib3) 2010; 233
Hybertson (10.1016/j.freeradbiomed.2023.05.033_bib45) 2011; 32
Tanaka (10.1016/j.freeradbiomed.2023.05.033_bib53) 2018; 2018
Sakai (10.1016/j.freeradbiomed.2023.05.033_bib47) 2012; 113
Goodman (10.1016/j.freeradbiomed.2023.05.033_bib48) 2014; 3
Kang (10.1016/j.freeradbiomed.2023.05.033_bib24) 2013; 288
Zhou (10.1016/j.freeradbiomed.2023.05.033_bib21) 2021; 9
Yi (10.1016/j.freeradbiomed.2023.05.033_bib55) 2011; 44
He (10.1016/j.freeradbiomed.2023.05.033_bib56) 2010; 401
Chiba (10.1016/j.freeradbiomed.2023.05.033_bib52) 2014; 28
Miyamoto (10.1016/j.freeradbiomed.2023.05.033_bib33) 2006; 16
Cacicedo (10.1016/j.freeradbiomed.2023.05.033_bib43) 2004; 324
Hayman (10.1016/j.freeradbiomed.2023.05.033_bib29) 1996; 122
Saftig (10.1016/j.freeradbiomed.2023.05.033_bib30) 1998; 95
Zwerina (10.1016/j.freeradbiomed.2023.05.033_bib46) 2005; 19
Chiba (10.1016/j.freeradbiomed.2023.05.033_bib51) 2003; 133
Balkan (10.1016/j.freeradbiomed.2023.05.033_bib36) 2009; 446
Matsumoto (10.1016/j.freeradbiomed.2023.05.033_bib39) 2004; 279
Redlich (10.1016/j.freeradbiomed.2023.05.033_bib5) 2012; 11
Stapleton (10.1016/j.freeradbiomed.2023.05.033_bib26) 1996; 271
References_xml – start-page: 21
  year: 2020
  ident: bib31
  article-title: Osteoclast multinucleation: review of current literature
  publication-title: Int. J. Mol. Sci.
– volume: 27
  start-page: 1289
  year: 2012
  end-page: 1297
  ident: bib34
  article-title: Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells
  publication-title: J. Bone Miner. Res.
– volume: 106
  start-page: 852
  year: 2005
  end-page: 859
  ident: bib16
  article-title: A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation
  publication-title: Blood
– volume: 288
  start-page: 12187
  year: 2013
  end-page: 12196
  ident: bib24
  article-title: Genetic deletion of catalytic subunits of AMP-activated protein kinase increases osteoclasts and reduces bone mass in young adult mice
  publication-title: J. Biol. Chem.
– volume: 122
  start-page: 3151
  year: 1996
  end-page: 3162
  ident: bib29
  article-title: Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis
  publication-title: Development
– volume: 446
  start-page: 90
  year: 2009
  end-page: 98
  ident: bib36
  article-title: Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand
  publication-title: Gene
– volume: 36
  start-page: 1931
  year: 2016
  end-page: 1942
  ident: bib19
  article-title: AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550
  publication-title: Mol. Cell Biol.
– volume: 5
  start-page: 9
  year: 2012
  end-page: 19
  ident: bib14
  article-title: Oxidative stress and antioxidant defense
  publication-title: World Allergy Organ J.
– volume: 324
  start-page: 1204
  year: 2004
  end-page: 1209
  ident: bib43
  article-title: AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 21
  start-page: 233
  year: 2014
  end-page: 241
  ident: bib9
  article-title: Regulation of NFATc1 in osteoclast differentiation
  publication-title: J. Bone. Metab.
– volume: 19
  start-page: 2011
  year: 2005
  end-page: 2013
  ident: bib46
  article-title: Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption
  publication-title: Faseb. J.
– volume: 271
  start-page: 611
  year: 1996
  end-page: 614
  ident: bib26
  article-title: Mammalian AMP-activated protein kinase subfamily
  publication-title: J. Biol. Chem.
– volume: 201
  start-page: 309
  year: 2009
  end-page: 320
  ident: bib6
  article-title: Bone loss in inflammatory disorders
  publication-title: J. Endocrinol.
– volume: 89
  start-page: 667
  year: 2011
  end-page: 676
  ident: bib18
  article-title: AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan
  publication-title: J. Mol. Med. (Berl.)
– volume: 22
  start-page: 176
  year: 2008
  end-page: 185
  ident: bib37
  article-title: NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP)
  publication-title: Mol. Endocrinol.
– volume: 103
  start-page: 239
  year: 2000
  end-page: 252
  ident: bib40
  article-title: Signal transduction by the JNK group of MAP kinases
  publication-title: Cell
– volume: 279
  start-page: 45969
  year: 2004
  end-page: 45979
  ident: bib39
  article-title: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1
  publication-title: J. Biol. Chem.
– volume: 112
  start-page: 3159
  year: 2011
  end-page: 3166
  ident: bib57
  article-title: Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis
  publication-title: J. Cell. Biochem.
– volume: 277
  start-page: 22131
  year: 2002
  end-page: 22139
  ident: bib13
  article-title: Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression
  publication-title: J. Biol. Chem.
– volume: 481
  start-page: 314
  year: 2012
  end-page: 320
  ident: bib22
  article-title: The contribution of bone to whole-organism physiology
  publication-title: Nature
– volume: 120
  start-page: 12382
  year: 2019
  end-page: 12392
  ident: bib42
  article-title: AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors
  publication-title: J. Cell. Biochem.
– volume: 2015
  year: 2015
  ident: bib4
  article-title: Mechanisms of bone resorption in periodontitis
  publication-title: J. Immunol. Res.
– volume: 16
  year: 2021
  ident: bib49
  article-title: Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-kappaB/ERK signaling pathway
  publication-title: PLoS One
– volume: 3
  year: 2014
  ident: bib48
  article-title: AMPK activators as a drug for diabetes, cancer and cardiovascular disease
  publication-title: Pharm Regul Aff
– volume: 47
  start-page: 926
  year: 2010
  end-page: 937
  ident: bib25
  article-title: AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts
  publication-title: Bone
– volume: 146
  start-page: 728
  year: 2005
  end-page: 735
  ident: bib44
  article-title: Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation
  publication-title: Endocrinology
– volume: 3
  start-page: 889
  year: 2002
  end-page: 901
  ident: bib10
  article-title: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
  publication-title: Dev. Cell
– volume: 20
  start-page: 234
  year: 2020
  ident: bib58
  article-title: Curcumin inhibits the migration of osteoclast precursors and osteoclastogenesis by repressing CCL3 production
  publication-title: BMC Complement. Med. Ther.
– volume: 32
  start-page: 234
  year: 2011
  end-page: 246
  ident: bib45
  article-title: Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation
  publication-title: Mol. Aspect. Med.
– volume: 95
  start-page: 13453
  year: 1998
  end-page: 13458
  ident: bib30
  article-title: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 133
  start-page: 1892
  year: 2003
  end-page: 1897
  ident: bib51
  article-title: Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice
  publication-title: J. Nutr.
– volume: 16
  start-page: 341
  year: 2006
  end-page: 342
  ident: bib33
  article-title: The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity
  publication-title: Mod. Rheumatol.
– volume: 16
  start-page: 1444
  year: 2001
  end-page: 1452
  ident: bib28
  article-title: Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K
  publication-title: J. Bone Miner. Res.
– volume: 11
  start-page: 234
  year: 2012
  end-page: 250
  ident: bib5
  article-title: Inflammatory bone loss: pathogenesis and therapeutic intervention
  publication-title: Nat. Rev. Drug Discov.
– volume: 483
  start-page: 718
  year: 2017
  end-page: 724
  ident: bib59
  article-title: Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 70
  start-page: 859
  year: 2021
  end-page: 875
  ident: bib8
  article-title: The pathophysiology of immunoporosis: innovative therapeutic targets
  publication-title: Inflamm. Res.
– volume: 9
  start-page: 1028
  year: 2018
  ident: bib50
  article-title: Hesperetin prevents bone resorption by inhibiting RANKL-induced osteoclastogenesis and jnk mediated irf-3/c-jun activation
  publication-title: Front. Pharmacol.
– volume: 202
  start-page: 345
  year: 2005
  end-page: 351
  ident: bib32
  article-title: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells
  publication-title: J. Exp. Med.
– volume: 28
  start-page: 289
  year: 2014
  end-page: 295
  ident: bib52
  article-title: Hesperidin prevents androgen deficiency-induced bone loss in male mice
  publication-title: Phytother Res.
– volume: 10
  start-page: 601
  year: 1995
  end-page: 606
  ident: bib35
  article-title: Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter
  publication-title: J. Bone Miner. Res.
– volume: 2018
  year: 2018
  ident: bib53
  article-title: Terminalia bellirica (gaertn.) roxb. Extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-kappaB and akt/AMPK/Nrf2 pathways
  publication-title: Oxid. Med. Cell. Longev.
– volume: 401
  start-page: 356
  year: 2010
  end-page: 362
  ident: bib56
  article-title: Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 280
  start-page: 35209
  year: 2005
  end-page: 35216
  ident: bib38
  article-title: Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis
  publication-title: J. Biol. Chem.
– volume: 85
  start-page: 632
  year: 1990
  end-page: 639
  ident: bib15
  article-title: Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo
  publication-title: J. Clin. Invest.
– volume: 13
  start-page: 791
  year: 2007
  end-page: 801
  ident: bib1
  article-title: Skeletal remodeling in health and disease
  publication-title: Nat. Med.
– volume: 20
  start-page: 1126
  year: 2014
  end-page: 1167
  ident: bib12
  article-title: Reactive oxygen species in inflammation and tissue injury
  publication-title: Antioxidants Redox Signal.
– volume: 9
  start-page: 25
  year: 2021
  ident: bib21
  article-title: Endocrine role of bone in the regulation of energy metabolism
  publication-title: Bone Res.
– volume: 6
  start-page: 121
  year: 2011
  end-page: 145
  ident: bib2
  article-title: Disorders of bone remodeling
  publication-title: Annu. Rev. Pathol.
– volume: 88
  start-page: 417
  year: 2015
  end-page: 426
  ident: bib20
  article-title: Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response
  publication-title: Free Radic. Biol. Med.
– volume: 15
  start-page: 103
  year: 2000
  end-page: 110
  ident: bib27
  article-title: Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover
  publication-title: J. Bone Miner. Res.
– volume: 44
  start-page: 194
  year: 2011
  end-page: 203
  ident: bib55
  article-title: Resveratrol activates AMPK and suppresses LPS-induced NF-kappaB-dependent COX-2 activation in RAW 264.7 macrophage cells
  publication-title: Anat. Cell Biol.
– volume: 202
  start-page: 1261
  year: 2005
  end-page: 1269
  ident: bib41
  article-title: Autoamplification of NFATc1 expression determines its essential role in bone homeostasis
  publication-title: J. Exp. Med.
– volume: 12
  start-page: 1479
  year: 2020
  ident: bib54
  article-title: Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes
  publication-title: Nutrients
– volume: 106
  start-page: 1481
  year: 2000
  end-page: 1488
  ident: bib11
  article-title: TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand
  publication-title: J. Clin. Invest.
– volume: 13
  start-page: 251
  year: 2012
  end-page: 262
  ident: bib17
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 296
  start-page: E139
  year: 2009
  end-page: E146
  ident: bib23
  article-title: Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 113
  start-page: 486
  year: 2012
  end-page: 498
  ident: bib47
  article-title: Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis
  publication-title: J. Cell. Biochem.
– volume: 233
  start-page: 301
  year: 2010
  end-page: 312
  ident: bib3
  article-title: Bone remodeling in rheumatic disease: a question of balance
  publication-title: Immunol. Rev.
– volume: 39
  start-page: 19
  year: 2021
  end-page: 26
  ident: bib7
  article-title: Osteoclast differentiation by RANKL and OPG signaling pathways
  publication-title: J. Bone Miner. Metabol.
– volume: 11
  start-page: 234
  year: 2012
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib5
  article-title: Inflammatory bone loss: pathogenesis and therapeutic intervention
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3669
– volume: 13
  start-page: 791
  year: 2007
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib1
  article-title: Skeletal remodeling in health and disease
  publication-title: Nat. Med.
  doi: 10.1038/nm1593
– volume: 483
  start-page: 718
  year: 2017
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib59
  article-title: Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.12.075
– volume: 21
  start-page: 233
  year: 2014
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib9
  article-title: Regulation of NFATc1 in osteoclast differentiation
  publication-title: J. Bone. Metab.
  doi: 10.11005/jbm.2014.21.4.233
– volume: 95
  start-page: 13453
  year: 1998
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib30
  article-title: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.95.23.13453
– volume: 19
  start-page: 2011
  year: 2005
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib46
  article-title: Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption
  publication-title: Faseb. J.
  doi: 10.1096/fj.05-4278fje
– volume: 401
  start-page: 356
  year: 2010
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib56
  article-title: Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.09.053
– volume: 39
  start-page: 19
  year: 2021
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib7
  article-title: Osteoclast differentiation by RANKL and OPG signaling pathways
  publication-title: J. Bone Miner. Metabol.
  doi: 10.1007/s00774-020-01162-6
– volume: 112
  start-page: 3159
  year: 2011
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib57
  article-title: Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.23242
– volume: 32
  start-page: 234
  year: 2011
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib45
  article-title: Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation
  publication-title: Mol. Aspect. Med.
  doi: 10.1016/j.mam.2011.10.006
– volume: 47
  start-page: 926
  year: 2010
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib25
  article-title: AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts
  publication-title: Bone
  doi: 10.1016/j.bone.2010.08.001
– volume: 89
  start-page: 667
  year: 2011
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib18
  article-title: AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-011-0748-0
– volume: 44
  start-page: 194
  year: 2011
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib55
  article-title: Resveratrol activates AMPK and suppresses LPS-induced NF-kappaB-dependent COX-2 activation in RAW 264.7 macrophage cells
  publication-title: Anat. Cell Biol.
  doi: 10.5115/acb.2011.44.3.194
– volume: 85
  start-page: 632
  year: 1990
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib15
  article-title: Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI114485
– volume: 20
  start-page: 234
  year: 2020
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib58
  article-title: Curcumin inhibits the migration of osteoclast precursors and osteoclastogenesis by repressing CCL3 production
  publication-title: BMC Complement. Med. Ther.
  doi: 10.1186/s12906-020-03014-2
– volume: 324
  start-page: 1204
  year: 2004
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib43
  article-title: AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.09.177
– volume: 88
  start-page: 417
  year: 2015
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib20
  article-title: Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.03.030
– volume: 36
  start-page: 1931
  year: 2016
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib19
  article-title: AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00118-16
– volume: 9
  start-page: 1028
  year: 2018
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib50
  article-title: Hesperetin prevents bone resorption by inhibiting RANKL-induced osteoclastogenesis and jnk mediated irf-3/c-jun activation
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.01028
– volume: 103
  start-page: 239
  year: 2000
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib40
  article-title: Signal transduction by the JNK group of MAP kinases
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00116-1
– volume: 12
  start-page: 1479
  year: 2020
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib54
  article-title: Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes
  publication-title: Nutrients
  doi: 10.3390/nu12051479
– volume: 9
  start-page: 25
  year: 2021
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib21
  article-title: Endocrine role of bone in the regulation of energy metabolism
  publication-title: Bone Res.
  doi: 10.1038/s41413-021-00142-4
– volume: 13
  start-page: 251
  year: 2012
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib17
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3311
– volume: 10
  start-page: 601
  year: 1995
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib35
  article-title: Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650100413
– volume: 15
  start-page: 103
  year: 2000
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib27
  article-title: Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2000.15.1.103
– start-page: 21
  year: 2020
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib31
  article-title: Osteoclast multinucleation: review of current literature
  publication-title: Int. J. Mol. Sci.
– volume: 202
  start-page: 345
  year: 2005
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib32
  article-title: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20050645
– volume: 133
  start-page: 1892
  year: 2003
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib51
  article-title: Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice
  publication-title: J. Nutr.
  doi: 10.1093/jn/133.6.1892
– volume: 201
  start-page: 309
  year: 2009
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib6
  article-title: Bone loss in inflammatory disorders
  publication-title: J. Endocrinol.
  doi: 10.1677/JOE-08-0568
– volume: 22
  start-page: 176
  year: 2008
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib37
  article-title: NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP)
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2007-0237
– volume: 296
  start-page: E139
  year: 2009
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib23
  article-title: Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.90677.2008
– volume: 16
  start-page: 341
  year: 2006
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib33
  article-title: The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity
  publication-title: Mod. Rheumatol.
  doi: 10.3109/s10165-006-0524-0
– volume: 120
  start-page: 12382
  year: 2019
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib42
  article-title: AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.28504
– volume: 28
  start-page: 289
  year: 2014
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib52
  article-title: Hesperidin prevents androgen deficiency-induced bone loss in male mice
  publication-title: Phytother Res.
  doi: 10.1002/ptr.5001
– volume: 202
  start-page: 1261
  year: 2005
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib41
  article-title: Autoamplification of NFATc1 expression determines its essential role in bone homeostasis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20051150
– volume: 280
  start-page: 35209
  year: 2005
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib38
  article-title: Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M505815200
– volume: 279
  start-page: 45969
  year: 2004
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib39
  article-title: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408795200
– volume: 16
  year: 2021
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib49
  article-title: Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-kappaB/ERK signaling pathway
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0261127
– volume: 27
  start-page: 1289
  year: 2012
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib34
  article-title: Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1575
– volume: 70
  start-page: 859
  year: 2021
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib8
  article-title: The pathophysiology of immunoporosis: innovative therapeutic targets
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-021-01484-9
– volume: 3
  start-page: 889
  year: 2002
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib10
  article-title: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(02)00369-6
– volume: 122
  start-page: 3151
  year: 1996
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib29
  article-title: Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis
  publication-title: Development
  doi: 10.1242/dev.122.10.3151
– volume: 6
  start-page: 121
  year: 2011
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib2
  article-title: Disorders of bone remodeling
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-011110-130203
– volume: 288
  start-page: 12187
  year: 2013
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib24
  article-title: Genetic deletion of catalytic subunits of AMP-activated protein kinase increases osteoclasts and reduces bone mass in young adult mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.430389
– volume: 233
  start-page: 301
  year: 2010
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib3
  article-title: Bone remodeling in rheumatic disease: a question of balance
  publication-title: Immunol. Rev.
  doi: 10.1111/j.0105-2896.2009.00857.x
– volume: 146
  start-page: 728
  year: 2005
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib44
  article-title: Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1021
– volume: 277
  start-page: 22131
  year: 2002
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib13
  article-title: Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111883200
– volume: 5
  start-page: 9
  year: 2012
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib14
  article-title: Oxidative stress and antioxidant defense
  publication-title: World Allergy Organ J.
  doi: 10.1097/WOX.0b013e3182439613
– volume: 2018
  year: 2018
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib53
  article-title: Terminalia bellirica (gaertn.) roxb. Extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-kappaB and akt/AMPK/Nrf2 pathways
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2018/9364364
– volume: 481
  start-page: 314
  year: 2012
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib22
  article-title: The contribution of bone to whole-organism physiology
  publication-title: Nature
  doi: 10.1038/nature10763
– volume: 106
  start-page: 852
  year: 2005
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib16
  article-title: A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation
  publication-title: Blood
  doi: 10.1182/blood-2004-09-3662
– volume: 20
  start-page: 1126
  year: 2014
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib12
  article-title: Reactive oxygen species in inflammation and tissue injury
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2012.5149
– volume: 271
  start-page: 611
  year: 1996
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib26
  article-title: Mammalian AMP-activated protein kinase subfamily
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.2.611
– volume: 113
  start-page: 486
  year: 2012
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib47
  article-title: Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.23372
– volume: 106
  start-page: 1481
  year: 2000
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib11
  article-title: TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI11176
– volume: 16
  start-page: 1444
  year: 2001
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib28
  article-title: Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2001.16.8.1444
– volume: 2015
  year: 2015
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib4
  article-title: Mechanisms of bone resorption in periodontitis
  publication-title: J. Immunol. Res.
  doi: 10.1155/2015/615486
– volume: 3
  year: 2014
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib48
  article-title: AMPK activators as a drug for diabetes, cancer and cardiovascular disease
  publication-title: Pharm Regul Aff
  doi: 10.4172/2167-7689.1000118
– volume: 446
  start-page: 90
  year: 2009
  ident: 10.1016/j.freeradbiomed.2023.05.033_bib36
  article-title: Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand
  publication-title: Gene
  doi: 10.1016/j.gene.2009.06.013
SSID ssj0004538
Score 2.4989278
Snippet AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107
SubjectTerms AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
AMPK
Antioxidants - metabolism
Antioxidants - pharmacology
Cell Differentiation
Cell-fusion
HO-1
Mitogen-Activated Protein Kinases - metabolism
NF-kappa B - genetics
NF-kappa B - metabolism
Osteoclast
Osteoclasts - metabolism
Oxidative Stress
Phytochemicals
RANK Ligand - pharmacology
Title AMPK negatively regulates RANKL-induced osteoclast differentiation by controlling oxidative stress
URI https://dx.doi.org/10.1016/j.freeradbiomed.2023.05.033
https://www.ncbi.nlm.nih.gov/pubmed/37270032
https://www.proquest.com/docview/2822375220
Volume 205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQiKoXRKEPHkWuWvVmNhs7ccyhUoRAC1tWVVskbpZfqbaiWbQEib30t3fGSSgckJA4xrIdZ2Yy89meByGfcpsaqbxhzmWSCZspprgXLLOFB4DNTS4xwPlsko_OxelFdrFEDvtYGHSr7HR_q9Ojtu5aBh01B1fT6eBHUqghmE9AKJjyUGBOUCEkSvn-3-G9jOGxmjV2Ztj7Bfn438ermoeAV9Yx0n0fK4nHNJ6cP2alHkOh0Rodr5O1DkbSsl3pK7IU6g2yWdawhf6zoJ9pdOyMJ-YbZLWtN7nYJLY8-zamdfgVs31fLui8rUQfrun3cjL-ymCDDqz2FCM_Zg6AdUP7CipNy0NqF7Rzb8dAdjq7nfo4G22jTl6T8-Ojn4cj1hVZYE4I1TAucm5tUnhQegZaCm9sVlklkwqwgcf0eQByeOFMkKgPcuGUyysOOj5UQiT8DVmuZ3V4R-jQGaC3yWwqvRh6CyR3RhWqynlIYbYtctATVbsuAzkWwrjUvavZb_2AIxo5opNMA0e2iLgbfNUm4njasC899_QDudJgMp42wYee5xr-PLxOMXWY3VxrdMDlEvArfNjbVhjuVsYlXujzdPu5r98hL_EJT7HTZJcsN_Ob8B5gUGP3opzvkZXyZDya_ANziQmi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrYBeELQ8ytMIxM1sNnZePVSKKqot-xCCVurN8itoUclW21Tq_ntmnKTQQ6VKXJ3YSWacmc_2zDcAH1MT66xwmlubZFyapOCFcJInJncIsIVOM0pwns3T8Yn8epqcbsBBnwtDYZWd7W9terDWXcuwk-bwfLEY_ojyYoTuExEKUR5KeQ82iZ0qGcBmeTQZz_8hDQ8Frel-Th0ewIe_YV7Vyns6tQ7J7p-pmHhg8hTiNkd1GxANDunwMTzqkCQr25d9Ahu-3oadssZV9O81-8RCbGfYNN-G-23JyfUOmHL2bcJq_zMQfp-t2aotRu8v2PdyPplyXKOjth2j5I-lRWzdsL6IStOqkZk16yLcKZedLa8WLozG2sSTp3By-OX4YMy7OgvcSlk0XMhUGBPlDu2expbcaZNUpsiiCuGBIwY9xDkit9pnZBJSaQubVgLNvK-kjMQzGNTL2r8ANrIa5a0TE2dOjpxBkVtd5EWVCh_jaLuw1wtV2Y6EnGphnKk-2uyXuqERRRpRUaJQI7sgrzuft1wcd-u232tP3ZhaCr3G3QZ43-tc4c9HJyq69svLC0UxuCJDCIsf9rydDNdvJjI60xfxy_99_Dt4OD6eTdX0aD55BVt0hTa14-g1DJrVpX-DqKgxb7tZ_wd-awxT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMPK+negatively+regulates+RANKL-induced+osteoclast+differentiation+by+controlling+oxidative+stress&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Tanaka%2C+Miori&rft.au=Inoue%2C+Hirofumi&rft.au=Takahashi%2C+Nobuyuki&rft.au=Uehara%2C+Mariko&rft.date=2023-08-20&rft.issn=0891-5849&rft.volume=205&rft.spage=107&rft.epage=115&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2023.05.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2023_05_033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon