AMPK negatively regulates RANKL-induced osteoclast differentiation by controlling oxidative stress
AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to c...
Saved in:
Published in | Free radical biology & medicine Vol. 205; pp. 107 - 115 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases.
[Display omitted]
•AMPK knockdown promoted RANKL-induced osteoclast differentiation, osteoclastic gene expression, and MAPK/NF-κB activation in RAW 264.7 cells.•AMPK knockdown led to defective synthesis of HO-1 and Nrf2.•NAC abolished osteoclast formation and MAPK/NF-κB activation induced by AMPK knockdown.•Several phytochemicals suppressed osteoclast differentiation via AMPK. |
---|---|
AbstractList | AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases.AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases. AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases. [Display omitted] •AMPK knockdown promoted RANKL-induced osteoclast differentiation, osteoclastic gene expression, and MAPK/NF-κB activation in RAW 264.7 cells.•AMPK knockdown led to defective synthesis of HO-1 and Nrf2.•NAC abolished osteoclast formation and MAPK/NF-κB activation induced by AMPK knockdown.•Several phytochemicals suppressed osteoclast differentiation via AMPK. AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases. |
Author | Inoue, Hirofumi Uehara, Mariko Tanaka, Miori Takahashi, Nobuyuki |
Author_xml | – sequence: 1 givenname: Miori surname: Tanaka fullname: Tanaka, Miori organization: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan – sequence: 2 givenname: Hirofumi surname: Inoue fullname: Inoue, Hirofumi organization: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan – sequence: 3 givenname: Nobuyuki surname: Takahashi fullname: Takahashi, Nobuyuki organization: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan – sequence: 4 givenname: Mariko orcidid: 0000-0003-0402-0968 surname: Uehara fullname: Uehara, Mariko email: mari@nodai.ac.jp organization: Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37270032$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAYRS1URKeFv4AssWGT4FfiRKxGVXmow0MI1pZjfx555LGL7VTMvyfTaRew6sqSde-xfM8FOospAkJvKGkpof27XesyQNZ28mkPtmWE8ZZ0LeH8GVrRQfJGdGN_hlZkGGnTDWI8Rxel7AghouPDC3TOJZOEcLZC0_rL9xscYaurv4NwwBm2c9AVCv6x_nqzaXy0swGLU6mQTNClYuudgwyx-qWUIp4O2KRYcwrBxy1Of7y9p-FSM5TyEj13OhR49XBeol8frn9efWo23z5-vlpvGiPEWBsuej5NZLCUUr3cDFZPnZtGSRwj1MqRy55KPhgNkhPJe2FG0zsOEwUnBOGX6O2Je5vT7xlKVXtfDISgI6S5KDYwxmXH2DH6-iE6T8uE6jb7vc4H9bjLElifAianUjI4ZXy9_23N2gdFiTq6UDv1jwt1dKFIpxYXC-P9f4zHZ57Wvj61YZnszkNWxXiIiwqfwVRlk38S5y9Iqa6v |
CitedBy_id | crossref_primary_10_3389_fgene_2024_1346367 crossref_primary_10_1016_j_psj_2024_103442 crossref_primary_10_1186_s13018_025_05544_2 crossref_primary_10_1177_1934578X251323393 crossref_primary_10_3390_nu16193379 crossref_primary_10_1111_eos_12955 crossref_primary_10_4327_jsnfs_77_117 crossref_primary_10_1016_j_ijbiomac_2024_134882 crossref_primary_10_3390_ijms25137269 |
Cites_doi | 10.1038/nrd3669 10.1038/nm1593 10.1016/j.bbrc.2016.12.075 10.11005/jbm.2014.21.4.233 10.1073/pnas.95.23.13453 10.1096/fj.05-4278fje 10.1016/j.bbrc.2010.09.053 10.1007/s00774-020-01162-6 10.1002/jcb.23242 10.1016/j.mam.2011.10.006 10.1016/j.bone.2010.08.001 10.1007/s00109-011-0748-0 10.5115/acb.2011.44.3.194 10.1172/JCI114485 10.1186/s12906-020-03014-2 10.1016/j.bbrc.2004.09.177 10.1016/j.freeradbiomed.2015.03.030 10.1128/MCB.00118-16 10.3389/fphar.2018.01028 10.1016/S0092-8674(00)00116-1 10.3390/nu12051479 10.1038/s41413-021-00142-4 10.1038/nrm3311 10.1002/jbmr.5650100413 10.1359/jbmr.2000.15.1.103 10.1084/jem.20050645 10.1093/jn/133.6.1892 10.1677/JOE-08-0568 10.1210/me.2007-0237 10.1152/ajpendo.90677.2008 10.3109/s10165-006-0524-0 10.1002/jcb.28504 10.1002/ptr.5001 10.1084/jem.20051150 10.1074/jbc.M505815200 10.1074/jbc.M408795200 10.1371/journal.pone.0261127 10.1002/jbmr.1575 10.1007/s00011-021-01484-9 10.1016/S1534-5807(02)00369-6 10.1242/dev.122.10.3151 10.1146/annurev-pathol-011110-130203 10.1074/jbc.M112.430389 10.1111/j.0105-2896.2009.00857.x 10.1210/en.2004-1021 10.1074/jbc.M111883200 10.1097/WOX.0b013e3182439613 10.1155/2018/9364364 10.1038/nature10763 10.1182/blood-2004-09-3662 10.1089/ars.2012.5149 10.1074/jbc.271.2.611 10.1002/jcb.23372 10.1172/JCI11176 10.1359/jbmr.2001.16.8.1444 10.1155/2015/615486 10.4172/2167-7689.1000118 10.1016/j.gene.2009.06.013 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.freeradbiomed.2023.05.033 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 115 |
ExternalDocumentID | 37270032 10_1016_j_freeradbiomed_2023_05_033 S0891584923004744 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI ~G- .GJ .HR 29H 53G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HEA HLW HMK HMO HVGLF HX~ HZ~ R2- RIG SBG WUQ XPP ZGI CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c449t-3463bb08d111a4498dab5fb970f201d793761738cae7307364c9c6f3eb1ef4403 |
IEDL.DBID | .~1 |
ISSN | 0891-5849 1873-4596 |
IngestDate | Sun Aug 24 03:49:24 EDT 2025 Wed Feb 19 02:15:17 EST 2025 Thu Apr 24 22:53:04 EDT 2025 Tue Jul 01 01:11:48 EDT 2025 Fri Feb 23 02:35:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative stress DC-STAMP MCP-1 RANKL JNK Ctsk Osteoclast HO-1 NFATc1 TRAP OC-STAMP MAPK OSCAR Cell-fusion NF-κB Phytochemicals TNF-α Nrf2 ROS AMPK |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c449t-3463bb08d111a4498dab5fb970f201d793761738cae7307364c9c6f3eb1ef4403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0402-0968 |
PMID | 37270032 |
PQID | 2822375220 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2822375220 pubmed_primary_37270032 crossref_citationtrail_10_1016_j_freeradbiomed_2023_05_033 crossref_primary_10_1016_j_freeradbiomed_2023_05_033 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2023_05_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-20 |
PublicationDateYYYYMMDD | 2023-08-20 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Miyamoto (bib33) 2006; 16 Guo, Ding, Wang, Yan (bib49) 2021; 16 Lee, Kim, Lee, Kim (bib25) 2010; 47 Garrett, Boyce, Oreffo, Bonewald (bib15) 1990; 85 Asagiri, Sato, Usami, Ochi (bib41) 2005; 202 Zhang, Tang, Liu, Song (bib50) 2018; 9 Saftig, Hunziker, Wehmeyer, Jones (bib30) 1998; 95 Tanaka, Kishimoto, Sasaki, Sato (bib53) 2018; 2018 Reddy, Hundley, Windle, Alcantara (bib35) 1995; 10 Davis (bib40) 2000; 103 Lee, Choi, Baik, Han (bib16) 2005; 106 Kim, Lee, Ha Kim, Choi, Kim (bib37) 2008; 22 Tanaka, Sato, Kishimoto, Mabashi-Asazuma (bib54) 2020; 12 Cacicedo, Yagihashi, Keaney, Ruderman, Ido (bib43) 2004; 324 Lam, Takeshita, Barker, Kanagawa (bib11) 2000; 106 Kodama, Kaito (bib31) 2020 Kim, Kim (bib9) 2014; 21 Liang, Xue, Wang, Xie (bib58) 2020; 20 Chiba, Uehara, Wu, Wang (bib51) 2003; 133 Zaidi (bib1) 2007; 13 Joo, Kim, Lee, Kim (bib19) 2016; 36 Ferbebouh, Vallieres, Benderdour, Fernandes (bib8) 2021; 70 Hardy, Cooper (bib6) 2009; 201 Zwerina, Tzima, Hayer, Redlich (bib46) 2005; 19 Kim, Ke, Sul, Kim (bib57) 2011; 112 Kiviranta, Morko, Uusitalo, Aro (bib28) 2001; 16 Kanazawa, Yamaguchi, Yano, Yamauchi, Sugimoto (bib23) 2009; 296 Balkan, Martinez, Fernandez, Rodriguez (bib36) 2009; 446 Pang, Rodriguez-Gonzalez, Hernandez, Recinos (bib42) 2019; 120 Feng, McDonald (bib2) 2011; 6 Zhou, Guo, Xiao, Guo (bib21) 2021; 9 Matsumoto, Kogawa, Wada, Takayanagi (bib39) 2004; 279 Hybertson, Gao, Bose, McCord (bib45) 2011; 32 Zimmermann, Baldinger, Mayerhofer, Atanasov (bib20) 2015; 88 He, Andersson, Lindgren, Li (bib56) 2010; 401 Hienz, Paliwal, Ivanovski (bib4) 2015; 2015 Udagawa, Koide, Nakamura, Nakamichi (bib7) 2021; 39 Hardie, Ross, Hawley (bib17) 2012; 13 Chiba, Kim, Matsumoto, Akiyama (bib52) 2014; 28 Hayman, Jones, Boyde, Foster (bib29) 1996; 122 Yi, Jeon, Shin, Jeong (bib55) 2011; 44 Lean, Jagger, Kirstein, Fuller, Chambers (bib44) 2005; 146 Goodman, Liu, Zhu, Li (bib48) 2014; 3 Takagi, Inoue, Takahashi, Katsumata-Tsuboi, Uehara (bib59) 2017; 483 Stapleton, Mitchelhill, Gao, Widmer (bib26) 1996; 271 Walsh, Gravallese (bib3) 2010; 233 Hsu, Wen (bib13) 2002; 277 Birben, Sahiner, Sackesen, Erzurum, Kalayci (bib14) 2012; 5 Mittal, Siddiqui, Tran, Reddy, Malik (bib12) 2014; 20 Angel, Walsh, Forwood, Ostrowski (bib27) 2000; 15 Yagi, Miyamoto, Sawatani, Iwamoto (bib32) 2005; 202 Kang, Viollet, Wu (bib24) 2013; 288 Takayanagi, Kim, Koga, Nishina (bib10) 2002; 3 Kim, Kim, Lee, Jin (bib38) 2005; 280 Salminen, Hyttinen, Kaarniranta (bib18) 2011; 89 Redlich, Smolen (bib5) 2012; 11 Karsenty, Ferron (bib22) 2012; 481 Miyamoto, Suzuki, Miyauchi, Iwasaki (bib34) 2012; 27 Sakai, Shimada-Sugawara, Nishishita, Fukuma (bib47) 2012; 113 Kim (10.1016/j.freeradbiomed.2023.05.033_bib37) 2008; 22 Miyamoto (10.1016/j.freeradbiomed.2023.05.033_bib34) 2012; 27 Kodama (10.1016/j.freeradbiomed.2023.05.033_bib31) 2020 Liang (10.1016/j.freeradbiomed.2023.05.033_bib58) 2020; 20 Zhang (10.1016/j.freeradbiomed.2023.05.033_bib50) 2018; 9 Lee (10.1016/j.freeradbiomed.2023.05.033_bib25) 2010; 47 Takagi (10.1016/j.freeradbiomed.2023.05.033_bib59) 2017; 483 Guo (10.1016/j.freeradbiomed.2023.05.033_bib49) 2021; 16 Joo (10.1016/j.freeradbiomed.2023.05.033_bib19) 2016; 36 Tanaka (10.1016/j.freeradbiomed.2023.05.033_bib54) 2020; 12 Karsenty (10.1016/j.freeradbiomed.2023.05.033_bib22) 2012; 481 Zaidi (10.1016/j.freeradbiomed.2023.05.033_bib1) 2007; 13 Lean (10.1016/j.freeradbiomed.2023.05.033_bib44) 2005; 146 Lam (10.1016/j.freeradbiomed.2023.05.033_bib11) 2000; 106 Kim (10.1016/j.freeradbiomed.2023.05.033_bib57) 2011; 112 Lee (10.1016/j.freeradbiomed.2023.05.033_bib16) 2005; 106 Kiviranta (10.1016/j.freeradbiomed.2023.05.033_bib28) 2001; 16 Takayanagi (10.1016/j.freeradbiomed.2023.05.033_bib10) 2002; 3 Kim (10.1016/j.freeradbiomed.2023.05.033_bib9) 2014; 21 Garrett (10.1016/j.freeradbiomed.2023.05.033_bib15) 1990; 85 Pang (10.1016/j.freeradbiomed.2023.05.033_bib42) 2019; 120 Zimmermann (10.1016/j.freeradbiomed.2023.05.033_bib20) 2015; 88 Kanazawa (10.1016/j.freeradbiomed.2023.05.033_bib23) 2009; 296 Yagi (10.1016/j.freeradbiomed.2023.05.033_bib32) 2005; 202 Angel (10.1016/j.freeradbiomed.2023.05.033_bib27) 2000; 15 Kim (10.1016/j.freeradbiomed.2023.05.033_bib38) 2005; 280 Mittal (10.1016/j.freeradbiomed.2023.05.033_bib12) 2014; 20 Hsu (10.1016/j.freeradbiomed.2023.05.033_bib13) 2002; 277 Ferbebouh (10.1016/j.freeradbiomed.2023.05.033_bib8) 2021; 70 Udagawa (10.1016/j.freeradbiomed.2023.05.033_bib7) 2021; 39 Asagiri (10.1016/j.freeradbiomed.2023.05.033_bib41) 2005; 202 Davis (10.1016/j.freeradbiomed.2023.05.033_bib40) 2000; 103 Reddy (10.1016/j.freeradbiomed.2023.05.033_bib35) 1995; 10 Feng (10.1016/j.freeradbiomed.2023.05.033_bib2) 2011; 6 Hardy (10.1016/j.freeradbiomed.2023.05.033_bib6) 2009; 201 Salminen (10.1016/j.freeradbiomed.2023.05.033_bib18) 2011; 89 Birben (10.1016/j.freeradbiomed.2023.05.033_bib14) 2012; 5 Hardie (10.1016/j.freeradbiomed.2023.05.033_bib17) 2012; 13 Hienz (10.1016/j.freeradbiomed.2023.05.033_bib4) 2015; 2015 Walsh (10.1016/j.freeradbiomed.2023.05.033_bib3) 2010; 233 Hybertson (10.1016/j.freeradbiomed.2023.05.033_bib45) 2011; 32 Tanaka (10.1016/j.freeradbiomed.2023.05.033_bib53) 2018; 2018 Sakai (10.1016/j.freeradbiomed.2023.05.033_bib47) 2012; 113 Goodman (10.1016/j.freeradbiomed.2023.05.033_bib48) 2014; 3 Kang (10.1016/j.freeradbiomed.2023.05.033_bib24) 2013; 288 Zhou (10.1016/j.freeradbiomed.2023.05.033_bib21) 2021; 9 Yi (10.1016/j.freeradbiomed.2023.05.033_bib55) 2011; 44 He (10.1016/j.freeradbiomed.2023.05.033_bib56) 2010; 401 Chiba (10.1016/j.freeradbiomed.2023.05.033_bib52) 2014; 28 Miyamoto (10.1016/j.freeradbiomed.2023.05.033_bib33) 2006; 16 Cacicedo (10.1016/j.freeradbiomed.2023.05.033_bib43) 2004; 324 Hayman (10.1016/j.freeradbiomed.2023.05.033_bib29) 1996; 122 Saftig (10.1016/j.freeradbiomed.2023.05.033_bib30) 1998; 95 Zwerina (10.1016/j.freeradbiomed.2023.05.033_bib46) 2005; 19 Chiba (10.1016/j.freeradbiomed.2023.05.033_bib51) 2003; 133 Balkan (10.1016/j.freeradbiomed.2023.05.033_bib36) 2009; 446 Matsumoto (10.1016/j.freeradbiomed.2023.05.033_bib39) 2004; 279 Redlich (10.1016/j.freeradbiomed.2023.05.033_bib5) 2012; 11 Stapleton (10.1016/j.freeradbiomed.2023.05.033_bib26) 1996; 271 |
References_xml | – start-page: 21 year: 2020 ident: bib31 article-title: Osteoclast multinucleation: review of current literature publication-title: Int. J. Mol. Sci. – volume: 27 start-page: 1289 year: 2012 end-page: 1297 ident: bib34 article-title: Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells publication-title: J. Bone Miner. Res. – volume: 106 start-page: 852 year: 2005 end-page: 859 ident: bib16 article-title: A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation publication-title: Blood – volume: 288 start-page: 12187 year: 2013 end-page: 12196 ident: bib24 article-title: Genetic deletion of catalytic subunits of AMP-activated protein kinase increases osteoclasts and reduces bone mass in young adult mice publication-title: J. Biol. Chem. – volume: 122 start-page: 3151 year: 1996 end-page: 3162 ident: bib29 article-title: Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis publication-title: Development – volume: 446 start-page: 90 year: 2009 end-page: 98 ident: bib36 article-title: Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand publication-title: Gene – volume: 36 start-page: 1931 year: 2016 end-page: 1942 ident: bib19 article-title: AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550 publication-title: Mol. Cell Biol. – volume: 5 start-page: 9 year: 2012 end-page: 19 ident: bib14 article-title: Oxidative stress and antioxidant defense publication-title: World Allergy Organ J. – volume: 324 start-page: 1204 year: 2004 end-page: 1209 ident: bib43 article-title: AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells publication-title: Biochem. Biophys. Res. Commun. – volume: 21 start-page: 233 year: 2014 end-page: 241 ident: bib9 article-title: Regulation of NFATc1 in osteoclast differentiation publication-title: J. Bone. Metab. – volume: 19 start-page: 2011 year: 2005 end-page: 2013 ident: bib46 article-title: Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption publication-title: Faseb. J. – volume: 271 start-page: 611 year: 1996 end-page: 614 ident: bib26 article-title: Mammalian AMP-activated protein kinase subfamily publication-title: J. Biol. Chem. – volume: 201 start-page: 309 year: 2009 end-page: 320 ident: bib6 article-title: Bone loss in inflammatory disorders publication-title: J. Endocrinol. – volume: 89 start-page: 667 year: 2011 end-page: 676 ident: bib18 article-title: AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan publication-title: J. Mol. Med. (Berl.) – volume: 22 start-page: 176 year: 2008 end-page: 185 ident: bib37 article-title: NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP) publication-title: Mol. Endocrinol. – volume: 103 start-page: 239 year: 2000 end-page: 252 ident: bib40 article-title: Signal transduction by the JNK group of MAP kinases publication-title: Cell – volume: 279 start-page: 45969 year: 2004 end-page: 45979 ident: bib39 article-title: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1 publication-title: J. Biol. Chem. – volume: 112 start-page: 3159 year: 2011 end-page: 3166 ident: bib57 article-title: Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis publication-title: J. Cell. Biochem. – volume: 277 start-page: 22131 year: 2002 end-page: 22139 ident: bib13 article-title: Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression publication-title: J. Biol. Chem. – volume: 481 start-page: 314 year: 2012 end-page: 320 ident: bib22 article-title: The contribution of bone to whole-organism physiology publication-title: Nature – volume: 120 start-page: 12382 year: 2019 end-page: 12392 ident: bib42 article-title: AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors publication-title: J. Cell. Biochem. – volume: 2015 year: 2015 ident: bib4 article-title: Mechanisms of bone resorption in periodontitis publication-title: J. Immunol. Res. – volume: 16 year: 2021 ident: bib49 article-title: Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-kappaB/ERK signaling pathway publication-title: PLoS One – volume: 3 year: 2014 ident: bib48 article-title: AMPK activators as a drug for diabetes, cancer and cardiovascular disease publication-title: Pharm Regul Aff – volume: 47 start-page: 926 year: 2010 end-page: 937 ident: bib25 article-title: AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts publication-title: Bone – volume: 146 start-page: 728 year: 2005 end-page: 735 ident: bib44 article-title: Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation publication-title: Endocrinology – volume: 3 start-page: 889 year: 2002 end-page: 901 ident: bib10 article-title: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts publication-title: Dev. Cell – volume: 20 start-page: 234 year: 2020 ident: bib58 article-title: Curcumin inhibits the migration of osteoclast precursors and osteoclastogenesis by repressing CCL3 production publication-title: BMC Complement. Med. Ther. – volume: 32 start-page: 234 year: 2011 end-page: 246 ident: bib45 article-title: Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation publication-title: Mol. Aspect. Med. – volume: 95 start-page: 13453 year: 1998 end-page: 13458 ident: bib30 article-title: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 133 start-page: 1892 year: 2003 end-page: 1897 ident: bib51 article-title: Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice publication-title: J. Nutr. – volume: 16 start-page: 341 year: 2006 end-page: 342 ident: bib33 article-title: The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity publication-title: Mod. Rheumatol. – volume: 16 start-page: 1444 year: 2001 end-page: 1452 ident: bib28 article-title: Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K publication-title: J. Bone Miner. Res. – volume: 11 start-page: 234 year: 2012 end-page: 250 ident: bib5 article-title: Inflammatory bone loss: pathogenesis and therapeutic intervention publication-title: Nat. Rev. Drug Discov. – volume: 483 start-page: 718 year: 2017 end-page: 724 ident: bib59 article-title: Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP publication-title: Biochem. Biophys. Res. Commun. – volume: 70 start-page: 859 year: 2021 end-page: 875 ident: bib8 article-title: The pathophysiology of immunoporosis: innovative therapeutic targets publication-title: Inflamm. Res. – volume: 9 start-page: 1028 year: 2018 ident: bib50 article-title: Hesperetin prevents bone resorption by inhibiting RANKL-induced osteoclastogenesis and jnk mediated irf-3/c-jun activation publication-title: Front. Pharmacol. – volume: 202 start-page: 345 year: 2005 end-page: 351 ident: bib32 article-title: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells publication-title: J. Exp. Med. – volume: 28 start-page: 289 year: 2014 end-page: 295 ident: bib52 article-title: Hesperidin prevents androgen deficiency-induced bone loss in male mice publication-title: Phytother Res. – volume: 10 start-page: 601 year: 1995 end-page: 606 ident: bib35 article-title: Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter publication-title: J. Bone Miner. Res. – volume: 2018 year: 2018 ident: bib53 article-title: Terminalia bellirica (gaertn.) roxb. Extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-kappaB and akt/AMPK/Nrf2 pathways publication-title: Oxid. Med. Cell. Longev. – volume: 401 start-page: 356 year: 2010 end-page: 362 ident: bib56 article-title: Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production publication-title: Biochem. Biophys. Res. Commun. – volume: 280 start-page: 35209 year: 2005 end-page: 35216 ident: bib38 article-title: Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis publication-title: J. Biol. Chem. – volume: 85 start-page: 632 year: 1990 end-page: 639 ident: bib15 article-title: Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo publication-title: J. Clin. Invest. – volume: 13 start-page: 791 year: 2007 end-page: 801 ident: bib1 article-title: Skeletal remodeling in health and disease publication-title: Nat. Med. – volume: 20 start-page: 1126 year: 2014 end-page: 1167 ident: bib12 article-title: Reactive oxygen species in inflammation and tissue injury publication-title: Antioxidants Redox Signal. – volume: 9 start-page: 25 year: 2021 ident: bib21 article-title: Endocrine role of bone in the regulation of energy metabolism publication-title: Bone Res. – volume: 6 start-page: 121 year: 2011 end-page: 145 ident: bib2 article-title: Disorders of bone remodeling publication-title: Annu. Rev. Pathol. – volume: 88 start-page: 417 year: 2015 end-page: 426 ident: bib20 article-title: Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response publication-title: Free Radic. Biol. Med. – volume: 15 start-page: 103 year: 2000 end-page: 110 ident: bib27 article-title: Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover publication-title: J. Bone Miner. Res. – volume: 44 start-page: 194 year: 2011 end-page: 203 ident: bib55 article-title: Resveratrol activates AMPK and suppresses LPS-induced NF-kappaB-dependent COX-2 activation in RAW 264.7 macrophage cells publication-title: Anat. Cell Biol. – volume: 202 start-page: 1261 year: 2005 end-page: 1269 ident: bib41 article-title: Autoamplification of NFATc1 expression determines its essential role in bone homeostasis publication-title: J. Exp. Med. – volume: 12 start-page: 1479 year: 2020 ident: bib54 article-title: Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes publication-title: Nutrients – volume: 106 start-page: 1481 year: 2000 end-page: 1488 ident: bib11 article-title: TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand publication-title: J. Clin. Invest. – volume: 13 start-page: 251 year: 2012 end-page: 262 ident: bib17 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 296 start-page: E139 year: 2009 end-page: E146 ident: bib23 article-title: Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 113 start-page: 486 year: 2012 end-page: 498 ident: bib47 article-title: Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis publication-title: J. Cell. Biochem. – volume: 233 start-page: 301 year: 2010 end-page: 312 ident: bib3 article-title: Bone remodeling in rheumatic disease: a question of balance publication-title: Immunol. Rev. – volume: 39 start-page: 19 year: 2021 end-page: 26 ident: bib7 article-title: Osteoclast differentiation by RANKL and OPG signaling pathways publication-title: J. Bone Miner. Metabol. – volume: 11 start-page: 234 year: 2012 ident: 10.1016/j.freeradbiomed.2023.05.033_bib5 article-title: Inflammatory bone loss: pathogenesis and therapeutic intervention publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3669 – volume: 13 start-page: 791 year: 2007 ident: 10.1016/j.freeradbiomed.2023.05.033_bib1 article-title: Skeletal remodeling in health and disease publication-title: Nat. Med. doi: 10.1038/nm1593 – volume: 483 start-page: 718 year: 2017 ident: 10.1016/j.freeradbiomed.2023.05.033_bib59 article-title: Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.12.075 – volume: 21 start-page: 233 year: 2014 ident: 10.1016/j.freeradbiomed.2023.05.033_bib9 article-title: Regulation of NFATc1 in osteoclast differentiation publication-title: J. Bone. Metab. doi: 10.11005/jbm.2014.21.4.233 – volume: 95 start-page: 13453 year: 1998 ident: 10.1016/j.freeradbiomed.2023.05.033_bib30 article-title: Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.95.23.13453 – volume: 19 start-page: 2011 year: 2005 ident: 10.1016/j.freeradbiomed.2023.05.033_bib46 article-title: Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption publication-title: Faseb. J. doi: 10.1096/fj.05-4278fje – volume: 401 start-page: 356 year: 2010 ident: 10.1016/j.freeradbiomed.2023.05.033_bib56 article-title: Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.09.053 – volume: 39 start-page: 19 year: 2021 ident: 10.1016/j.freeradbiomed.2023.05.033_bib7 article-title: Osteoclast differentiation by RANKL and OPG signaling pathways publication-title: J. Bone Miner. Metabol. doi: 10.1007/s00774-020-01162-6 – volume: 112 start-page: 3159 year: 2011 ident: 10.1016/j.freeradbiomed.2023.05.033_bib57 article-title: Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis publication-title: J. Cell. Biochem. doi: 10.1002/jcb.23242 – volume: 32 start-page: 234 year: 2011 ident: 10.1016/j.freeradbiomed.2023.05.033_bib45 article-title: Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2011.10.006 – volume: 47 start-page: 926 year: 2010 ident: 10.1016/j.freeradbiomed.2023.05.033_bib25 article-title: AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts publication-title: Bone doi: 10.1016/j.bone.2010.08.001 – volume: 89 start-page: 667 year: 2011 ident: 10.1016/j.freeradbiomed.2023.05.033_bib18 article-title: AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-011-0748-0 – volume: 44 start-page: 194 year: 2011 ident: 10.1016/j.freeradbiomed.2023.05.033_bib55 article-title: Resveratrol activates AMPK and suppresses LPS-induced NF-kappaB-dependent COX-2 activation in RAW 264.7 macrophage cells publication-title: Anat. Cell Biol. doi: 10.5115/acb.2011.44.3.194 – volume: 85 start-page: 632 year: 1990 ident: 10.1016/j.freeradbiomed.2023.05.033_bib15 article-title: Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo publication-title: J. Clin. Invest. doi: 10.1172/JCI114485 – volume: 20 start-page: 234 year: 2020 ident: 10.1016/j.freeradbiomed.2023.05.033_bib58 article-title: Curcumin inhibits the migration of osteoclast precursors and osteoclastogenesis by repressing CCL3 production publication-title: BMC Complement. Med. Ther. doi: 10.1186/s12906-020-03014-2 – volume: 324 start-page: 1204 year: 2004 ident: 10.1016/j.freeradbiomed.2023.05.033_bib43 article-title: AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.09.177 – volume: 88 start-page: 417 year: 2015 ident: 10.1016/j.freeradbiomed.2023.05.033_bib20 article-title: Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.03.030 – volume: 36 start-page: 1931 year: 2016 ident: 10.1016/j.freeradbiomed.2023.05.033_bib19 article-title: AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00118-16 – volume: 9 start-page: 1028 year: 2018 ident: 10.1016/j.freeradbiomed.2023.05.033_bib50 article-title: Hesperetin prevents bone resorption by inhibiting RANKL-induced osteoclastogenesis and jnk mediated irf-3/c-jun activation publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01028 – volume: 103 start-page: 239 year: 2000 ident: 10.1016/j.freeradbiomed.2023.05.033_bib40 article-title: Signal transduction by the JNK group of MAP kinases publication-title: Cell doi: 10.1016/S0092-8674(00)00116-1 – volume: 12 start-page: 1479 year: 2020 ident: 10.1016/j.freeradbiomed.2023.05.033_bib54 article-title: Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes publication-title: Nutrients doi: 10.3390/nu12051479 – volume: 9 start-page: 25 year: 2021 ident: 10.1016/j.freeradbiomed.2023.05.033_bib21 article-title: Endocrine role of bone in the regulation of energy metabolism publication-title: Bone Res. doi: 10.1038/s41413-021-00142-4 – volume: 13 start-page: 251 year: 2012 ident: 10.1016/j.freeradbiomed.2023.05.033_bib17 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3311 – volume: 10 start-page: 601 year: 1995 ident: 10.1016/j.freeradbiomed.2023.05.033_bib35 article-title: Characterization of the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.5650100413 – volume: 15 start-page: 103 year: 2000 ident: 10.1016/j.freeradbiomed.2023.05.033_bib27 article-title: Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2000.15.1.103 – start-page: 21 year: 2020 ident: 10.1016/j.freeradbiomed.2023.05.033_bib31 article-title: Osteoclast multinucleation: review of current literature publication-title: Int. J. Mol. Sci. – volume: 202 start-page: 345 year: 2005 ident: 10.1016/j.freeradbiomed.2023.05.033_bib32 article-title: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells publication-title: J. Exp. Med. doi: 10.1084/jem.20050645 – volume: 133 start-page: 1892 year: 2003 ident: 10.1016/j.freeradbiomed.2023.05.033_bib51 article-title: Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice publication-title: J. Nutr. doi: 10.1093/jn/133.6.1892 – volume: 201 start-page: 309 year: 2009 ident: 10.1016/j.freeradbiomed.2023.05.033_bib6 article-title: Bone loss in inflammatory disorders publication-title: J. Endocrinol. doi: 10.1677/JOE-08-0568 – volume: 22 start-page: 176 year: 2008 ident: 10.1016/j.freeradbiomed.2023.05.033_bib37 article-title: NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP) publication-title: Mol. Endocrinol. doi: 10.1210/me.2007-0237 – volume: 296 start-page: E139 year: 2009 ident: 10.1016/j.freeradbiomed.2023.05.033_bib23 article-title: Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.90677.2008 – volume: 16 start-page: 341 year: 2006 ident: 10.1016/j.freeradbiomed.2023.05.033_bib33 article-title: The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity publication-title: Mod. Rheumatol. doi: 10.3109/s10165-006-0524-0 – volume: 120 start-page: 12382 year: 2019 ident: 10.1016/j.freeradbiomed.2023.05.033_bib42 article-title: AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors publication-title: J. Cell. Biochem. doi: 10.1002/jcb.28504 – volume: 28 start-page: 289 year: 2014 ident: 10.1016/j.freeradbiomed.2023.05.033_bib52 article-title: Hesperidin prevents androgen deficiency-induced bone loss in male mice publication-title: Phytother Res. doi: 10.1002/ptr.5001 – volume: 202 start-page: 1261 year: 2005 ident: 10.1016/j.freeradbiomed.2023.05.033_bib41 article-title: Autoamplification of NFATc1 expression determines its essential role in bone homeostasis publication-title: J. Exp. Med. doi: 10.1084/jem.20051150 – volume: 280 start-page: 35209 year: 2005 ident: 10.1016/j.freeradbiomed.2023.05.033_bib38 article-title: Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505815200 – volume: 279 start-page: 45969 year: 2004 ident: 10.1016/j.freeradbiomed.2023.05.033_bib39 article-title: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408795200 – volume: 16 year: 2021 ident: 10.1016/j.freeradbiomed.2023.05.033_bib49 article-title: Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-kappaB/ERK signaling pathway publication-title: PLoS One doi: 10.1371/journal.pone.0261127 – volume: 27 start-page: 1289 year: 2012 ident: 10.1016/j.freeradbiomed.2023.05.033_bib34 article-title: Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1575 – volume: 70 start-page: 859 year: 2021 ident: 10.1016/j.freeradbiomed.2023.05.033_bib8 article-title: The pathophysiology of immunoporosis: innovative therapeutic targets publication-title: Inflamm. Res. doi: 10.1007/s00011-021-01484-9 – volume: 3 start-page: 889 year: 2002 ident: 10.1016/j.freeradbiomed.2023.05.033_bib10 article-title: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00369-6 – volume: 122 start-page: 3151 year: 1996 ident: 10.1016/j.freeradbiomed.2023.05.033_bib29 article-title: Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis publication-title: Development doi: 10.1242/dev.122.10.3151 – volume: 6 start-page: 121 year: 2011 ident: 10.1016/j.freeradbiomed.2023.05.033_bib2 article-title: Disorders of bone remodeling publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-011110-130203 – volume: 288 start-page: 12187 year: 2013 ident: 10.1016/j.freeradbiomed.2023.05.033_bib24 article-title: Genetic deletion of catalytic subunits of AMP-activated protein kinase increases osteoclasts and reduces bone mass in young adult mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.430389 – volume: 233 start-page: 301 year: 2010 ident: 10.1016/j.freeradbiomed.2023.05.033_bib3 article-title: Bone remodeling in rheumatic disease: a question of balance publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2009.00857.x – volume: 146 start-page: 728 year: 2005 ident: 10.1016/j.freeradbiomed.2023.05.033_bib44 article-title: Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation publication-title: Endocrinology doi: 10.1210/en.2004-1021 – volume: 277 start-page: 22131 year: 2002 ident: 10.1016/j.freeradbiomed.2023.05.033_bib13 article-title: Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111883200 – volume: 5 start-page: 9 year: 2012 ident: 10.1016/j.freeradbiomed.2023.05.033_bib14 article-title: Oxidative stress and antioxidant defense publication-title: World Allergy Organ J. doi: 10.1097/WOX.0b013e3182439613 – volume: 2018 year: 2018 ident: 10.1016/j.freeradbiomed.2023.05.033_bib53 article-title: Terminalia bellirica (gaertn.) roxb. Extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-kappaB and akt/AMPK/Nrf2 pathways publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2018/9364364 – volume: 481 start-page: 314 year: 2012 ident: 10.1016/j.freeradbiomed.2023.05.033_bib22 article-title: The contribution of bone to whole-organism physiology publication-title: Nature doi: 10.1038/nature10763 – volume: 106 start-page: 852 year: 2005 ident: 10.1016/j.freeradbiomed.2023.05.033_bib16 article-title: A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation publication-title: Blood doi: 10.1182/blood-2004-09-3662 – volume: 20 start-page: 1126 year: 2014 ident: 10.1016/j.freeradbiomed.2023.05.033_bib12 article-title: Reactive oxygen species in inflammation and tissue injury publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2012.5149 – volume: 271 start-page: 611 year: 1996 ident: 10.1016/j.freeradbiomed.2023.05.033_bib26 article-title: Mammalian AMP-activated protein kinase subfamily publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.2.611 – volume: 113 start-page: 486 year: 2012 ident: 10.1016/j.freeradbiomed.2023.05.033_bib47 article-title: Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis publication-title: J. Cell. Biochem. doi: 10.1002/jcb.23372 – volume: 106 start-page: 1481 year: 2000 ident: 10.1016/j.freeradbiomed.2023.05.033_bib11 article-title: TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand publication-title: J. Clin. Invest. doi: 10.1172/JCI11176 – volume: 16 start-page: 1444 year: 2001 ident: 10.1016/j.freeradbiomed.2023.05.033_bib28 article-title: Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2001.16.8.1444 – volume: 2015 year: 2015 ident: 10.1016/j.freeradbiomed.2023.05.033_bib4 article-title: Mechanisms of bone resorption in periodontitis publication-title: J. Immunol. Res. doi: 10.1155/2015/615486 – volume: 3 year: 2014 ident: 10.1016/j.freeradbiomed.2023.05.033_bib48 article-title: AMPK activators as a drug for diabetes, cancer and cardiovascular disease publication-title: Pharm Regul Aff doi: 10.4172/2167-7689.1000118 – volume: 446 start-page: 90 year: 2009 ident: 10.1016/j.freeradbiomed.2023.05.033_bib36 article-title: Identification of NFAT binding sites that mediate stimulation of cathepsin K promoter activity by RANK ligand publication-title: Gene doi: 10.1016/j.gene.2009.06.013 |
SSID | ssj0004538 |
Score | 2.4989278 |
Snippet | AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107 |
SubjectTerms | AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism AMPK Antioxidants - metabolism Antioxidants - pharmacology Cell Differentiation Cell-fusion HO-1 Mitogen-Activated Protein Kinases - metabolism NF-kappa B - genetics NF-kappa B - metabolism Osteoclast Osteoclasts - metabolism Oxidative Stress Phytochemicals RANK Ligand - pharmacology |
Title | AMPK negatively regulates RANKL-induced osteoclast differentiation by controlling oxidative stress |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2023.05.033 https://www.ncbi.nlm.nih.gov/pubmed/37270032 https://www.proquest.com/docview/2822375220 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQiKoXRKEPHkWuWvVmNhs7ccyhUoRAC1tWVVskbpZfqbaiWbQEib30t3fGSSgckJA4xrIdZ2Yy89meByGfcpsaqbxhzmWSCZspprgXLLOFB4DNTS4xwPlsko_OxelFdrFEDvtYGHSr7HR_q9Ojtu5aBh01B1fT6eBHUqghmE9AKJjyUGBOUCEkSvn-3-G9jOGxmjV2Ztj7Bfn438ermoeAV9Yx0n0fK4nHNJ6cP2alHkOh0Rodr5O1DkbSsl3pK7IU6g2yWdawhf6zoJ9pdOyMJ-YbZLWtN7nYJLY8-zamdfgVs31fLui8rUQfrun3cjL-ymCDDqz2FCM_Zg6AdUP7CipNy0NqF7Rzb8dAdjq7nfo4G22jTl6T8-Ojn4cj1hVZYE4I1TAucm5tUnhQegZaCm9sVlklkwqwgcf0eQByeOFMkKgPcuGUyysOOj5UQiT8DVmuZ3V4R-jQGaC3yWwqvRh6CyR3RhWqynlIYbYtctATVbsuAzkWwrjUvavZb_2AIxo5opNMA0e2iLgbfNUm4njasC899_QDudJgMp42wYee5xr-PLxOMXWY3VxrdMDlEvArfNjbVhjuVsYlXujzdPu5r98hL_EJT7HTZJcsN_Ob8B5gUGP3opzvkZXyZDya_ANziQmi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrYBeELQ8ytMIxM1sNnZePVSKKqot-xCCVurN8itoUclW21Tq_ntmnKTQQ6VKXJ3YSWacmc_2zDcAH1MT66xwmlubZFyapOCFcJInJncIsIVOM0pwns3T8Yn8epqcbsBBnwtDYZWd7W9terDWXcuwk-bwfLEY_ojyYoTuExEKUR5KeQ82iZ0qGcBmeTQZz_8hDQ8Frel-Th0ewIe_YV7Vyns6tQ7J7p-pmHhg8hTiNkd1GxANDunwMTzqkCQr25d9Ahu-3oadssZV9O81-8RCbGfYNN-G-23JyfUOmHL2bcJq_zMQfp-t2aotRu8v2PdyPplyXKOjth2j5I-lRWzdsL6IStOqkZk16yLcKZedLa8WLozG2sSTp3By-OX4YMy7OgvcSlk0XMhUGBPlDu2expbcaZNUpsiiCuGBIwY9xDkit9pnZBJSaQubVgLNvK-kjMQzGNTL2r8ANrIa5a0TE2dOjpxBkVtd5EWVCh_jaLuw1wtV2Y6EnGphnKk-2uyXuqERRRpRUaJQI7sgrzuft1wcd-u232tP3ZhaCr3G3QZ43-tc4c9HJyq69svLC0UxuCJDCIsf9rydDNdvJjI60xfxy_99_Dt4OD6eTdX0aD55BVt0hTa14-g1DJrVpX-DqKgxb7tZ_wd-awxT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMPK+negatively+regulates+RANKL-induced+osteoclast+differentiation+by+controlling+oxidative+stress&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Tanaka%2C+Miori&rft.au=Inoue%2C+Hirofumi&rft.au=Takahashi%2C+Nobuyuki&rft.au=Uehara%2C+Mariko&rft.date=2023-08-20&rft.issn=0891-5849&rft.volume=205&rft.spage=107&rft.epage=115&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2023.05.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_freeradbiomed_2023_05_033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |