Candle Soot-Based Electrosprayed Superhydrophobic Coatings for Self-Cleaning, Anti-Corrosion and Oil/Water Separation
The interest in candle soot (CS)-based superhydrophobic coatings has grown rapidly in recent years. Here, a simple and low-cost process has been developed for the fabrication of CS-based superhydrophobic coatings through electrospraying of the composite cocktail solution of CS and polyvinylidene flu...
Saved in:
Published in | Materials Vol. 15; no. 15; p. 5300 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The interest in candle soot (CS)-based superhydrophobic coatings has grown rapidly in recent years. Here, a simple and low-cost process has been developed for the fabrication of CS-based superhydrophobic coatings through electrospraying of the composite cocktail solution of CS and polyvinylidene fluoride (PVDF). Results show that the superhydrophobicity of the coating closely relates to the loading amount of CS which results in coatings with different roughnesses. Specifically, increasing the CS amount (not more than 0.4 g) normally enhances the superhydrophobicity of the coating due to higher roughness being presented in the produced microspheres. Further experiments demonstrate that the superhydrophobicity induced in the electrosprayed coating results from the synergistic effect of the cocktail solution and electrospray process, indicating the importance of the coating technique and the solution used. Versatile applications of CS-based superhydrophobic coatings including self-cleaning, anti-corrosion and oil/water separation are demonstrated. The present work provides a convenient method for the fabrication of CS-based superhydrophobic coatings, which is believed to gain great interest in the future. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma15155300 |