Highly Conductive Nanocrystalline Diamond Films and Electronic Metallization Scheme

By using a methane and hydrogen process gas mixture in an appropriate hot-filament CVD process without further dopant, high electrical conductivity of over 100 S/cm has been achieved in nanocrystalline diamond films deposited on silicon single-crystalline substrates. Furthermore, it was found that a...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 16; p. 4484
Main Authors Chen, Xin, Mohr, Markus, Brühne, Kai, Fecht, Hans-Jörg
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 10.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By using a methane and hydrogen process gas mixture in an appropriate hot-filament CVD process without further dopant, high electrical conductivity of over 100 S/cm has been achieved in nanocrystalline diamond films deposited on silicon single-crystalline substrates. Furthermore, it was found that an oxygen reactive-ion etching process (O-RIE) can improve the diamond film surface’s electron affinity, thus reducing the specific contact resistance. The reduction of the specific contact resistance by a factor of up to 16 was realized by the oxygen ion etching process, down to 6×10−6 Ωcm2. We provide a qualitative explanation for the mechanism behind the contact resistance reduction in terms of the electron affinity of the diamond surface. With the aid of XPS, AFM, and surface wetting measurements, we confirmed that a higher surface electron affinity is responsible for the lower specific contact resistance of the oxygen-terminated nanocrystalline diamond films.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14164484