Autologous blood transfusion promotes autophagy and inhibits hepatocellular carcinoma progression through HIF‐1α signalling pathway

To explore the molecular mechanism of autologous blood transfusion promoting autophagy of hepatocellular carcinoma (HCC) cells and inhibiting the HCC progression through HIF‐1α signalling pathway. This is a research paper. Rat hepatocellular carcinoma model and HepG2 cell model were built. The rats...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular and molecular medicine Vol. 27; no. 10; pp. 1353 - 1361
Main Authors Bai, Yu, Liu, Tong, Cui, Ying‐Hui, Li, Zhen‐Zhou, Zhou, Xiao‐Fang, Cheng, Yong, Wang, Jin‐Huo, Guo, Jian‐Rong
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.05.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To explore the molecular mechanism of autologous blood transfusion promoting autophagy of hepatocellular carcinoma (HCC) cells and inhibiting the HCC progression through HIF‐1α signalling pathway. This is a research paper. Rat hepatocellular carcinoma model and HepG2 cell model were built. The rats with HCC were conducted a surgery, and their blood was collected for detection to detect the recurrence and metastasis of the rats. Western blot was used to analysed the expression of HIF‐1α, TP53, MDM2, ATG5 and ATG14 protein. The apoptosis rate of HepG2 cells was detected by flow cytometry, and autophagosomes were observed by transmission electron microscopy. HIF‐1α expression was measured by immunofluorescence assay. The expressions of HIF‐1α, TP53, MDM2, ATG5 and ATG14 protein were highest in model + autoblood group compared with the model group. HIF‐1α content of model group was higher, but content of TP53, MDM2, ATG5 and ATG14 in the model group is the second. The highest apoptosis rate was found in HepG2 + autoblood group. The number of autophagosomes in HepG2 + autoblood was obviously larger than that of HepG2 + autoblood + inhibitor. HIF‐1α expression of immunofluorescence assay showed that high expression of HIF‐1α was clearly observed in HepG2 and HepG2 + autoblood group from confocal observation. However, there was no HIF‐1α protein expression in HepG2 + autoblood + inhibitor group. The migration rate in HepG2 group, HepG2 + autoblood group and HepG2 + autoblood + inhibitor group was 85.71 ± 7.38%, 14.36 ± 6.54% and 61.25 ± 5.39%, respectively. Autologous blood transfusion promotes autophagy of HCC cells through HIF‐1α signalling pathway, which further inhibits HCC migration and erosion.
Bibliography:Yu Bai, Tong Liu, and Ying‐Hui Cui contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1582-1838
1582-4934
DOI:10.1111/jcmm.17736