Recent Advances in Organic Photovoltaic Materials Based on Thiazole‐Containing Heterocycles
Organic solar cells (OSCs) have achieved great progress, driven by the rapid development of wide bandgap electron donors and narrow bandgap non‐fullerene acceptors (NFAs). Among a large number of electron‐accepting (A) building blocks, thiazole (Tz) and its derived fused heterocycles have been widel...
Saved in:
Published in | Macromolecular rapid communications. Vol. 44; no. 13; pp. e2300102 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Organic solar cells (OSCs) have achieved great progress, driven by the rapid development of wide bandgap electron donors and narrow bandgap non‐fullerene acceptors (NFAs). Among a large number of electron‐accepting (A) building blocks, thiazole (Tz) and its derived fused heterocycles have been widely used to construct photovoltaic materials, especially conjugated polymers. Benefiting from the electron deficiency, rigidity, high planarity, and enhanced intra/intermolecular interactions of Tz‐containing heterocycles, some related photovoltaic materials exhibit proper energy levels, optimized molecular aggregation, and active layer morphology, leading to excellent photovoltaic performance. This review focuses on the progress of Tz‐based photovoltaic materials in the field of OSCs. First, the Tz‐based donor and acceptor photovoltaic materials are reviewed. Then, the materials based on promising Tz‐containing heterocycles, mainly including thiazolo[5,4‐d]thiazole (TzTz), benzo[1,2‐d:4,5‐d’]bis(thiazole) (BBTz), and benzo[d]thiazole (BTz) are summarized and discussed. In addition, the new emerging Tz‐fused structures and their application in OSCs are introduced. Finally, perspectives and outlooks for the further development of Tz‐containing heterocycle‐based photovoltaic materials are proposed.
In this review, the photovoltaic materials constructed by thiazole (Tz) and its derived heterocycles are summed up. Benefiting from the electron deficiency, high planarity, and enhanced intra/intermolecular interactions of Tz‐containing heterocycles, some corresponding photovoltaic materials exhibit excellent photovoltaic performance. In the end, the perspectives and outlooks of the Tz‐containing heterocycles‐based photovoltaic materials are presented and discussed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 1022-1336 1521-3927 1521-3927 |
DOI: | 10.1002/marc.202300102 |