Lithium atom population transfer by population trapping in a chirped microwave pulse
Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population transfer from n = 79 to n = 70 states of lithium atoms with more than 80% efficiency is...
Saved in:
Published in | Chinese physics B Vol. 18; no. 12; pp. 5272 - 5276 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/18/12/026 |
Cover
Loading…
Summary: | Using a time-dependent multilevel approach, we demonstrate that lithium atoms can be transferred to states of lower principle quantum number by exposing them to a frequency chirped microwave pulse. The population transfer from n = 79 to n = 70 states of lithium atoms with more than 80% efficiency is achieved by means of the sequential two-photon △n=-1 transitions. It is shown that the coherent control of the population transfer can be accomplished by the optimization of the chirping parameters and microwave field strength. The calculation results agree well with the experimental ones and novel explanations have been given to understand the experimental results. |
---|---|
Bibliography: | TN929.11 time-dependent multilevel approach, two-photon transition, frequency chirped mi- crowave pulse 11-5639/O4 O562.1 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/18/12/026 |