Immunomodulatory effects of lactoferrin
Lactoferrin (Lf) is an iron-binding glycoprotein of the transferrin family, which is expressed in most biological fluids with particularly high levels in mammalian milk. Its multiple activities lie in its capacity to bind iron and to interact with the molecular and cellular components of hosts and p...
Saved in:
Published in | Acta pharmacologica Sinica Vol. 35; no. 5; pp. 557 - 566 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1671-4083 1745-7254 1745-7254 |
DOI | 10.1038/aps.2013.200 |
Cover
Loading…
Summary: | Lactoferrin (Lf) is an iron-binding glycoprotein of the transferrin family, which is expressed in most biological fluids with particularly high levels in mammalian milk. Its multiple activities lie in its capacity to bind iron and to interact with the molecular and cellular components of hosts and pathogens. Lf can bind and sequester lipopolysaccharides, thus preventing pro-inflammatory pathway activation, sepsis and tissue damages. Lf is also considered a cell-secreted mediator that bridges the innate and adaptive immune responses. In the recent years much has been learned about the mechanisms by which Lf exerts its activities. This review summarizes the recent advances in understanding the mechanisms underlying the multifunctional roles of Lf, and provides a future perspective on its potential prophylactic and therapeutic applications. |
---|---|
Bibliography: | lactoferrin; glycoprotein; transferring; immunomodulator; antimicrobial Lactoferrin (Lf) is an iron-binding glycoprotein of the transferrin family, which is expressed in most biological fluids with particularly high levels in mammalian milk. Its multiple activities lie in its capacity to bind iron and to interact with the molecular and cellular components of hosts and pathogens. Lf can bind and sequester lipopolysaccharides, thus preventing pro-inflammatory pathway activation, sepsis and tissue damages. Lf is also considered a cell-secreted mediator that bridges the innate and adaptive immune responses. In the recent years much has been learned about the mechanisms by which Lf exerts its activities. This review summarizes the recent advances in understanding the mechanisms underlying the multifunctional roles of Lf, and provides a future perspective on its potential prophylactic and therapeutic applications. 31-1347/R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 1671-4083 1745-7254 1745-7254 |
DOI: | 10.1038/aps.2013.200 |