The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel

In literature, five different sets of work material constants used in the Johnson–Cook's (J–C) constitutive equation are implemented in a numerical model to describe the behaviour of AISI 316L steel. The aim of this research is to study the effects of five different sets of material constants o...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine tools & manufacture Vol. 47; no. 3; pp. 462 - 470
Main Authors Umbrello, D., M’Saoubi, R., Outeiro, J.C.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In literature, five different sets of work material constants used in the Johnson–Cook's (J–C) constitutive equation are implemented in a numerical model to describe the behaviour of AISI 316L steel. The aim of this research is to study the effects of five different sets of material constants of the J–C constitutive equation in finite-element modelling of orthogonal cutting of AISI 316L on the experimental and predicted cutting forces, chip morphology, temperature distributions and residual stresses. Several experimental equipments were used to estimate the experimental results, such as piezoelectric dynamometer for cutting forces measurements, thermal imaging system for temperature measurements and X-ray diffraction technique for residual stresses determination on the machined surfaces; while an elastic–viscoplastic FEM formulation was implemented to predict the local and global variables involved in this research. It has been observed that all the considered process output and, in particular the residual stresses are very sensitive to the J–C's material constants.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0890-6955
1879-2170
DOI:10.1016/j.ijmachtools.2006.06.006