Real-time nanofabrication with high-speed atomic force microscopy

The ability to follow nanoscale processes in real-time has obvious benefits for the future of material science. In particular, the ability to evaluate the success of fabrication processes in situ would be an advantage for many in the semiconductor industry. We report on the application of a previous...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 20; no. 9; p. 095302
Main Authors Vicary, J A, Miles, M J
Format Journal Article
LanguageEnglish
Published England IOP Publishing 04.03.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ability to follow nanoscale processes in real-time has obvious benefits for the future of material science. In particular, the ability to evaluate the success of fabrication processes in situ would be an advantage for many in the semiconductor industry. We report on the application of a previously described high-speed atomic force microscope (AFM) for nanofabrication. The specific fabrication method presented here concerns the modification of a silicon surface by locally oxidizing the region in the vicinity of the AFM tip. Oxide features were fabricated during imaging, with relative tip-sample velocities of up to 10 cm s(-1), and with a data capture rate of 15 fps.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/20/9/095302