Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy
The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, s...
Saved in:
Published in | International journal of nanomedicine Vol. 19; pp. 6253 - 6277 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Zealand
Dove
01.01.2024
Dove Medical Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy. |
---|---|
AbstractList | The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy. Yujie Wang,1 Tingting Deng,1 Xi Liu,2 Xueyang Fang,1 Yongpan Mo,3 Ni Xie,4 Guohui Nie,1 Bin Zhang,1 Xiaoqin Fan1,4 1Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China; 2Department of Nephrology, Shenzhen Longgang Central Hospital, Shenzhen, 518116, People’s Republic of China; 3Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China; 4The Bio-Bank of Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of ChinaCorrespondence: Bin Zhang; Xiaoqin Fan, Email binzhang@email.szu.edu.cn; fanxiaoqin83@163.comAbstract: The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy. Keywords: tumor microenvironment, stimulus-responsive, drug delivery, cancer therapy, intelligent biomedicine The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy.The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy. |
Author | Fang, Xueyang Deng, Tingting Wang, Yujie Mo, Yongpan Liu, Xi Xie, Ni Zhang, Bin Nie, Guohui Fan, Xiaoqin |
Author_xml | – sequence: 1 givenname: Yujie surname: Wang fullname: Wang, Yujie – sequence: 2 givenname: Tingting surname: Deng fullname: Deng, Tingting – sequence: 3 givenname: Xi surname: Liu fullname: Liu, Xi – sequence: 4 givenname: Xueyang surname: Fang fullname: Fang, Xueyang – sequence: 5 givenname: Yongpan surname: Mo fullname: Mo, Yongpan – sequence: 6 givenname: Ni orcidid: 0000-0002-7167-9343 surname: Xie fullname: Xie, Ni – sequence: 7 givenname: Guohui surname: Nie fullname: Nie, Guohui – sequence: 8 givenname: Bin surname: Zhang fullname: Zhang, Bin – sequence: 9 givenname: Xiaoqin surname: Fan fullname: Fan, Xiaoqin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38911497$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktvEzEUhS1URB-wYo-8REIpY4-fK4RSHkGlIBrWlsdzJ3E1Yw_2JFL-PQ5JUYtY2bo-97s-uuccnYQYAKGXpLqkhMm3iy83l7eMa0mqJ-iMEKlmtCL1yYP7KTrP-a6quFRCP0OntdKEMC3P0Pp2sGnCNzbEsbdTF9OQ8Q_IYwytDys8RTytAS83Q0z4q3cpQtj6FMMAYcJFjr8ncD4DvkqbFb6C3m8h7bAPeG6Dg4SXa0h23D1HTzvbZ3hxPC_Qz48flvPPs-tvnxbz99czx5iaZqpthGCEcicUldC0DRGSUkVt3dau5i3jsqspaM6UamhRORBOcCqs5RXQ-gItDtw22jszJl_87Uy03vwpxLQyxbB3PRinRCM40x04YJpr3ThaCraBwm8dKax3B9a4aQZoXbGcbP8I-vgl-LVZxa0hhOhay_1vXh8JKf7aQJ7M4LODvrcB4iabupKEE6Y4K9JXD4f9nXK_qyIgB0FZQs4JOuP8ZCcf97N9b0hl9nkwJQ_mmIfS8-afnnvs_9S_AazMt3M |
CitedBy_id | crossref_primary_10_1021_acsanm_4c05766 crossref_primary_10_1002_advs_202401424 crossref_primary_10_1016_j_microc_2024_111938 crossref_primary_10_32604_or_2024_056955 crossref_primary_10_1039_D4NR04481A crossref_primary_10_1007_s40843_024_3077_0 crossref_primary_10_1016_j_inoche_2025_114030 crossref_primary_10_1016_j_ijbiomac_2024_136266 crossref_primary_10_1016_j_colsurfb_2024_114477 crossref_primary_10_1021_acs_jmedchem_4c02034 crossref_primary_10_3390_cancers16172975 crossref_primary_10_3390_cancers17040701 crossref_primary_10_1021_acsami_4c07269 crossref_primary_10_1016_j_apsusc_2024_162134 crossref_primary_10_1016_j_coco_2025_102362 crossref_primary_10_1016_j_ijbiomac_2025_140932 crossref_primary_10_3390_ijms252011271 crossref_primary_10_1063_5_0244706 crossref_primary_10_3390_cells13221924 |
Cites_doi | 10.2147/IJN.S303874 10.1002/anie.201203360 10.1007/s12274-022-4473-5 10.1073/pnas.0804746105 10.1111/j.1349-7006.2010.01826.x 10.2147/IJN.S135086 10.1016/j.jnutbio.2018.06.002 10.2147/IJN.S249144 10.1007/s40820-021-00726-z 10.1007/s12274-017-1736-7 10.1021/acsami.6b14639 10.1021/acsnano.5b00641 10.1016/j.jconrel.2016.08.016 10.1016/j.biomaterials.2017.03.010 10.1002/1097-0142(19930801)72:3<783::AID-CNCR2820720325>3.0.CO;2-U 10.1021/acs.nanolett.8b01924 10.1021/acs.nanolett.8b00737 10.1021/acsami.1c18589 10.3389/fphar.2021.636892 10.1039/D2TB02248F 10.1016/j.actbio.2017.12.034 10.1158/1078-0432.CCR-08-1905 10.1039/C7TB01477E 10.1039/C9RA01230C 10.1016/j.biomaterials.2015.10.022 10.1016/j.ijbiomac.2020.07.110 10.1021/acsnano.7b02675 10.1016/j.bmcl.2017.07.041 10.1038/s41423-019-0282-5 10.1021/bm049271i 10.1002/anie.201005120 10.1021/ar4000339 10.1021/acsami.5b04419 10.1016/j.ijpharm.2020.119915 10.1038/s41392-023-01332-8 10.1007/BF00928361 10.1002/anie.201703276 10.1021/la501054z 10.1002/adfm.201202215 10.1038/nature13905 10.1016/B978-0-444-64046-8.00310-4 10.1016/j.ajps.2017.05.007 10.1002/adhm.201400726 10.1038/s41591-018-0014-x 10.1208/s12249-023-02593-w 10.1039/d2bm01833k 10.1038/ncomms4364 10.1016/j.ejmech.2018.08.034 10.1021/am501754s 10.1021/nn406590q 10.1016/j.jconrel.2020.10.057 10.1016/j.colsurfb.2017.07.044 10.7150/thno.26889 10.1021/acs.nanolett.6b01632 10.1016/j.ccell.2023.02.016 10.1016/j.biomaterials.2019.01.007 10.1002/adma.201402572 10.1039/D3BM01171B 10.1517/14728222.2013.740461 10.1038/nnano.2017.52 10.1002/anie.202304894 10.1039/D2TB00615D 10.1073/pnas.1014403107 10.1016/S0167-8140(84)80077-8 10.1002/smll.202107732 10.1016/j.nano.2017.01.008 10.1002/anie.201409519 10.1016/j.actbio.2020.12.057 10.1002/anie.201800516 10.1002/anie.201407272 10.1021/acsbiomaterials.7b00435 10.1016/j.ymthe.2022.10.008 10.1080/10717544.2017.1381201 10.1158/2159-8290.CD-20-1808 10.7150/thno.52570 10.1186/1475-2867-13-89 10.2147/IJN.S438771 10.1016/j.tibs.2015.12.001 10.1021/acsami.0c17523 10.1016/j.nantod.2015.11.004 10.1016/j.biomaterials.2016.06.044 10.1158/0008-5472.CAN-18-3962 10.1007/s11095-007-9480-4 10.1021/jacs.5b11720 10.1021/nn503349g 10.1016/j.molliq.2021.115417 10.1074/jbc.M112.429159 10.1016/S0927-7757(02)00389-8 10.1016/j.mtbio.2023.100760 10.1002/adma.201700141 10.1038/s41598-019-56754-8 10.1016/S0168-3659(03)00205-0 10.1007/s11307-012-0549-z 10.2147/IJN.S101030 10.1002/anie.201408510 10.1039/C9NR09869K 10.1021/ja4108287 10.1016/j.jconrel.2003.06.001 10.1016/j.jddst.2021.102599 10.1002/anie.201504444 10.1073/pnas.0702439104 10.1021/bc3000222 10.1038/s41392-020-00280-x 10.1002/adma.201204455 10.1039/C7SC01765K 10.7150/thno.18299 10.1016/j.nantod.2020.100851 10.1021/acsami.8b11159 10.1016/j.biomaterials.2021.121110 10.1126/sciadv.abe3588 10.1186/s12951-023-02081-0 10.1158/0008-5472.CAN-08-3781 10.1021/acs.nanolett.6b01994 10.1136/jitc-2021-003960 10.1039/D1NR01645H 10.7150/thno.14843 10.1073/pnas.0914330107 10.1039/c2cc31697h 10.1021/nn101670k 10.7150/thno.18985 10.1002/jbm.a.33076 10.1002/anie.201503863 10.2147/ITT.S291767 10.1038/s41430-020-0684-6 10.1021/acsnano.3c06019 10.1021/ja402903h 10.1016/j.jinorgbio.2021.111634 10.3389/fphys.2014.00097 10.1021/acscentsci.3c00385 10.1039/D0BM01738H |
ContentType | Journal Article |
Copyright | 2024 Wang et al. 2024 Wang et al. 2024 Wang et al. |
Copyright_xml | – notice: 2024 Wang et al. – notice: 2024 Wang et al. 2024 Wang et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.2147/IJN.S459710 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Wang et al |
EISSN | 1178-2013 |
EndPage | 6277 |
ExternalDocumentID | oai_doaj_org_article_c86b6549fece49599bc2b65abe2e9dc1 PMC11193972 38911497 10_2147_IJN_S459710 |
Genre | Journal Article Review |
GroupedDBID | --- 0YH 29J 2WC 53G 5GY 5VS 7X7 8FI 8FJ 8G5 AAYXX ABUWG ACGFO ADBBV ADRAZ AEGXH AENEX AFKRA AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMOBN F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HMCUK HYE IAO IHR ITC KQ8 M2O M48 MM. O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM SJN SV3 TDBHL TR2 UKHRP VDV CGR CUY CVF ECM EIF NPM 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c448t-8db664125c6827ebdb1672282a3d3c35d457f32e95488b2c68ce6c6526aa50e23 |
IEDL.DBID | M48 |
ISSN | 1178-2013 1176-9114 |
IngestDate | Wed Aug 27 01:32:38 EDT 2025 Thu Aug 21 18:33:45 EDT 2025 Fri Jul 11 15:24:26 EDT 2025 Thu Apr 03 07:05:50 EDT 2025 Tue Jul 01 03:52:26 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | intelligent biomedicine cancer therapy drug delivery tumor microenvironment stimulus-responsive |
Language | English |
License | https://creativecommons.org/licenses/by-nc/3.0 2024 Wang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-8db664125c6827ebdb1672282a3d3c35d457f32e95488b2c68ce6c6526aa50e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7167-9343 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/IJN.S459710 |
PMID | 38911497 |
PQID | 3071514854 |
PQPubID | 23479 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c86b6549fece49599bc2b65abe2e9dc1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11193972 proquest_miscellaneous_3071514854 pubmed_primary_38911497 crossref_citationtrail_10_2147_IJN_S459710 crossref_primary_10_2147_IJN_S459710 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Zealand |
PublicationPlace_xml | – name: New Zealand |
PublicationTitle | International journal of nanomedicine |
PublicationTitleAlternate | Int J Nanomedicine |
PublicationYear | 2024 |
Publisher | Dove Dove Medical Press |
Publisher_xml | – name: Dove – name: Dove Medical Press |
References | Liberti (ref8) 2016; 41 Feng (ref15) 2017; 7 Xiao (ref39) 2020; 12 Luo (ref45) 2017; 12 Wang (ref88) 2015; 7 Koltai (ref10) 2020; 74 Shi (ref24) 2017; 5 Zhang (ref81) 2017; 24 Zheng (ref40) 2017; 3 Secret (ref102) 2014; 6 Kim (ref118) 2016; 75 Liu (ref130) 2023; 21 Wei (ref34) 2023; 17 Zhou (ref119) 2018; 8 Ling (ref42) 2014; 136 Tu (ref65) 2017; 56 Jiang (ref12) 2020; 15 Bejarano (ref1) 2021; 11 Cui (ref57) 2023; 9 Perry (ref61) 1993; 72 Grünwald (ref97) 2016; 239 Naito (ref115) 2012; 51 Wang (ref79) 2021; 7 Kato (ref11) 2013; 13 Jiang (ref44) 2022; 10 Li (ref111) 2021; 12 Lee (ref41) 2003; 90 Wickström (ref98) 2011; 102 Gondi (ref103) 2013; 17 Liu (ref32) 2012; 48 Sethuraman (ref25) 2008; 25 Cao (ref72) 2015; 10 da Silva (ref92) 2022; 226 Sameiyan (ref117) 2021; 123 Wu (ref29) 2023; 18 Daund (ref93) 2021; 64 Hsu (ref18) 2020; 163 Chau (ref107) 2019; 5 Lin (ref110) 2013; 25 Andreev (ref50) 2010; 107 Zhang (ref121) 2017; 12 Raza (ref58) 2018; 157 Linkous (ref100) 2009; 15 Chen (ref109) 2023; 8 Joshi (ref112) 2020; 590 Jing (ref70) 2018; 28 Dechsri (ref13) 2023; 24 Luo (ref71) 2016; 16 Chen (ref22) 2014; 26 Chang (ref74) 2014; 53 Zhuang (ref47) 2014; 8 Traut (ref113) 1994; 140 Daumar (ref53) 2012; 23 Du (ref66) 2015; 4 Wang (ref90) 2014; 30 Chung (ref33) 2015; 54 Vāvere (ref54) 2009; 69 Wang (ref17) 2016; 16 Wang (ref68) 2016; 8 Piao (ref26) 2018; 11 Andreev (ref49) 2014; 5 Bulmus (ref82) 2003; 93 Zheng (ref30) 2016; 138 Gong (ref7) 2020; 32 Sun (ref94) 2020; 8 Qian (ref125) 2016; 6 Zhou (ref16) 2019; 195 Hu (ref95) 2017; 128 Duan (ref120) 2021; 13 Mo (ref124) 2014; 5 Xu (ref131) 2023; 22 Sun (ref31) 2017; 11 Yu (ref85) 2023; 11 Taleghani (ref62) 2021; 328 Criado-Gonzalez (ref69) 2022; 10 Ma (ref78) 2021; 13 Deepagan (ref89) 2016; 103 Andreev (ref51) 2007; 104 Mao (ref75) 2018; 10 Ahn (ref35) 2018; 57 Bughda (ref105) 2021; 10 Shen (ref116) 2023; 62 Li (ref101) 2013; 23 Binnewies (ref5) 2018; 24 Lai (ref114) 2015; 9 Kim (ref38) 2014; 8 Licciardi (ref43) 2005; 6 Park (ref19) 2019; 9 Cheng (ref83) 2021; 13 Xia (ref14) 2018; 68 Hsu (ref104) 2011; 98 Yang (ref99) 2013; 288 Niu (ref59) 2021; 277 Yang (ref27) 2010; 4 Wu (ref80) 2015; 54 Fan (ref108) 2017; 13 Yang (ref86) 2019; 9 Ding (ref60) 2023; 11 Liang (ref128) 2021; 11 Ling (ref64) 2018; 18 Hinshaw (ref4) 2019; 79 Liang (ref129) 2023; 31 Zhai (ref20) 2021; 16 Han (ref46) 2003; 214 Xu (ref91) 2017; 29 Ren (ref127) 2023; 11 Reshetnyak (ref48) 2008; 105 de Visser (ref2) 2023; 41 Macholl (ref52) 2012; 14 Cheng (ref36) 2015; 518 Jin (ref6) 2020; 5 Hu (ref73) 2021; 330 Sun (ref67) 2018; 18 Xu (ref87) 2013; 46 Du (ref84) 2022; 18 Wang (ref23) 2015; 54 Chen (ref126) 2017; 27 Wang (ref77) 2013; 135 Qin (ref3) 2020; 17 An (ref55) 2010; 107 Li (ref76) 2018; 8 Chen (ref122) 2017; 8 Jia (ref37) 2017; 12 Zhao (ref21) 2015; 54 Sierra-Mondragon (ref63) 2018; 60 Ye (ref123) 2021; 13 Yang (ref56) 2023; 16 Zhang (ref96) 2016; 11 Schlossbauer (ref28) 2011; 50 Wike-Hooley (ref9) 1984; 2 Rastegari (ref106) 2017; 158 |
References_xml | – volume: 16 start-page: 3185 year: 2021 ident: ref20 publication-title: Int J Nanomed doi: 10.2147/IJN.S303874 – volume: 51 start-page: 10751 year: 2012 ident: ref115 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201203360 – volume: 16 start-page: 3924 year: 2023 ident: ref56 publication-title: Nano Res doi: 10.1007/s12274-022-4473-5 – volume: 105 start-page: 15340 year: 2008 ident: ref48 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804746105 – volume: 102 start-page: 501 year: 2011 ident: ref98 publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2010.01826.x – volume: 12 start-page: 4721 year: 2017 ident: ref121 publication-title: Int J Nanomed doi: 10.2147/IJN.S135086 – volume: 60 start-page: 47 year: 2018 ident: ref63 publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2018.06.002 – volume: 15 start-page: 3319 year: 2020 ident: ref12 publication-title: Int J Nanomed doi: 10.2147/IJN.S249144 – volume: 13 start-page: 203 year: 2021 ident: ref123 publication-title: Nanomicro Lett doi: 10.1007/s40820-021-00726-z – volume: 11 start-page: 3193 year: 2018 ident: ref26 publication-title: Nano Res doi: 10.1007/s12274-017-1736-7 – volume: 8 start-page: 35106 year: 2016 ident: ref68 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b14639 – volume: 9 start-page: 5234 year: 2015 ident: ref114 publication-title: ACS Nano doi: 10.1021/acsnano.5b00641 – volume: 239 start-page: 39 year: 2016 ident: ref97 publication-title: J Control Release doi: 10.1016/j.jconrel.2016.08.016 – volume: 128 start-page: 136 year: 2017 ident: ref95 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.03.010 – volume: 72 start-page: 783 year: 1993 ident: ref61 publication-title: Cancer doi: 10.1002/1097-0142(19930801)72:3<783::AID-CNCR2820720325>3.0.CO;2-U – volume: 18 start-page: 4618 year: 2018 ident: ref64 publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b01924 – volume: 18 start-page: 3643 year: 2018 ident: ref67 publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b00737 – volume: 13 start-page: 57380 year: 2021 ident: ref120 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c18589 – volume: 12 start-page: 636892 year: 2021 ident: ref111 publication-title: Front Pharmacol doi: 10.3389/fphar.2021.636892 – volume: 11 start-page: 1416 year: 2023 ident: ref85 publication-title: J Mat Chem B doi: 10.1039/D2TB02248F – volume: 68 start-page: 308 year: 2018 ident: ref14 publication-title: Acta Biomater doi: 10.1016/j.actbio.2017.12.034 – volume: 15 start-page: 1635 year: 2009 ident: ref100 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-1905 – volume: 5 start-page: 6847 year: 2017 ident: ref24 publication-title: J Mater Chem B doi: 10.1039/C7TB01477E – volume: 9 start-page: 9260 year: 2019 ident: ref86 publication-title: RSC Adv doi: 10.1039/C9RA01230C – volume: 75 start-page: 102 year: 2016 ident: ref118 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.022 – volume: 163 start-page: 1106 year: 2020 ident: ref18 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.07.110 – volume: 27 start-page: 1702102 year: 2017 ident: ref126 publication-title: Adv Funct Mat doi: 10.1007/s12274-017-1736-7 – volume: 11 start-page: 7049 year: 2017 ident: ref31 publication-title: ACS Nano doi: 10.1021/acsnano.7b02675 – volume: 28 start-page: 826 year: 2018 ident: ref70 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2017.07.041 – volume: 17 start-page: 1186 year: 2020 ident: ref3 publication-title: Cell Mol Immunol doi: 10.1038/s41423-019-0282-5 – volume: 6 start-page: 1085 year: 2005 ident: ref43 publication-title: Biomacromolecules doi: 10.1021/bm049271i – volume: 50 start-page: 6828 year: 2011 ident: ref28 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201005120 – volume: 46 start-page: 1647 year: 2013 ident: ref87 publication-title: Acc Chem Res doi: 10.1021/ar4000339 – volume: 7 start-page: 16054 year: 2015 ident: ref88 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b04419 – volume: 590 start-page: 119915 year: 2020 ident: ref112 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119915 – volume: 8 start-page: 70 year: 2023 ident: ref109 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-023-01332-8 – volume: 140 start-page: 1 year: 1994 ident: ref113 publication-title: Mol Cell Biochem doi: 10.1007/BF00928361 – volume: 56 start-page: 7620 year: 2017 ident: ref65 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201703276 – volume: 30 start-page: 5628 year: 2014 ident: ref90 publication-title: Langmuir doi: 10.1021/la501054z – volume: 23 start-page: 3040 year: 2013 ident: ref101 publication-title: Adv Funct Mater doi: 10.1002/adfm.201202215 – volume: 518 start-page: 107 year: 2015 ident: ref36 publication-title: Nature doi: 10.1038/nature13905 – volume: 5 start-page: 501 year: 2019 ident: ref107 publication-title: Comprehensive Biotechnol doi: 10.1016/B978-0-444-64046-8.00310-4 – volume: 12 start-page: 433 year: 2017 ident: ref37 publication-title: Asian J Pharm Sci doi: 10.1016/j.ajps.2017.05.007 – volume: 4 start-page: 771 year: 2015 ident: ref66 publication-title: Adv Healthc Mater doi: 10.1002/adhm.201400726 – volume: 24 start-page: 541 year: 2018 ident: ref5 publication-title: Nat Med doi: 10.1038/s41591-018-0014-x – volume: 24 start-page: 135 year: 2023 ident: ref13 publication-title: AAPS Pharm Sci Tech doi: 10.1208/s12249-023-02593-w – volume: 11 start-page: 1182 year: 2023 ident: ref60 publication-title: Biomater. Sci. doi: 10.1039/d2bm01833k – volume: 5 start-page: 3364 year: 2014 ident: ref124 publication-title: Nat Commun doi: 10.1038/ncomms4364 – volume: 157 start-page: 705 year: 2018 ident: ref58 publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2018.08.034 – volume: 6 start-page: 10313 year: 2014 ident: ref102 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501754s – volume: 8 start-page: 2812 year: 2014 ident: ref47 publication-title: ACS Nano doi: 10.1021/nn406590q – volume: 330 start-page: 842 year: 2021 ident: ref73 publication-title: J Control Release doi: 10.1016/j.jconrel.2020.10.057 – volume: 158 start-page: 589 year: 2017 ident: ref106 publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2017.07.044 – volume: 8 start-page: 4604 year: 2018 ident: ref119 publication-title: Theranostics doi: 10.7150/thno.26889 – volume: 16 start-page: 5401 year: 2016 ident: ref71 publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b01632 – volume: 41 start-page: 374 year: 2023 ident: ref2 publication-title: Cancer Cell doi: 10.1016/j.ccell.2023.02.016 – volume: 195 start-page: 86 year: 2019 ident: ref16 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.01.007 – volume: 26 start-page: 7019 year: 2014 ident: ref22 publication-title: Adv Mater doi: 10.1002/adma.201402572 – volume: 11 start-page: 7051 year: 2023 ident: ref127 publication-title: Biomater Sci doi: 10.1039/D3BM01171B – volume: 17 start-page: 281 year: 2013 ident: ref103 publication-title: Expert Opin Ther Targets doi: 10.1517/14728222.2013.740461 – volume: 12 start-page: 648 year: 2017 ident: ref45 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.52 – volume: 62 start-page: e202304894 year: 2023 ident: ref116 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202304894 – volume: 10 start-page: 7206 year: 2022 ident: ref69 publication-title: J Mater Chem B doi: 10.1039/D2TB00615D – volume: 107 start-page: 20246 year: 2010 ident: ref55 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1014403107 – volume: 2 start-page: 343 year: 1984 ident: ref9 publication-title: Radiother Oncol doi: 10.1016/S0167-8140(84)80077-8 – volume: 18 start-page: e2107732 year: 2022 ident: ref84 publication-title: Small doi: 10.1002/smll.202107732 – volume: 13 start-page: 1399 year: 2017 ident: ref108 publication-title: Nanomedicine doi: 10.1016/j.nano.2017.01.008 – volume: 54 start-page: 536 year: 2015 ident: ref23 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201409519 – volume: 123 start-page: 110 year: 2021 ident: ref117 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.057 – volume: 57 start-page: 2909 year: 2018 ident: ref35 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201800516 – volume: 53 start-page: 13126 year: 2014 ident: ref74 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201407272 – volume: 3 start-page: 2223 year: 2017 ident: ref40 publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.7b00435 – volume: 31 start-page: 1207 year: 2023 ident: ref129 publication-title: Mol Ther doi: 10.1016/j.ymthe.2022.10.008 – volume: 24 start-page: 1460 year: 2017 ident: ref81 publication-title: Drug Deliv doi: 10.1080/10717544.2017.1381201 – volume: 11 start-page: 933 year: 2021 ident: ref1 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-20-1808 – volume: 11 start-page: 3183 year: 2021 ident: ref128 publication-title: Theranostics doi: 10.7150/thno.52570 – volume: 13 start-page: 89 year: 2013 ident: ref11 publication-title: Cancer Cell Int doi: 10.1186/1475-2867-13-89 – volume: 18 start-page: 7985 year: 2023 ident: ref29 publication-title: Int J Nanomed doi: 10.2147/IJN.S438771 – volume: 41 start-page: 211 year: 2016 ident: ref8 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2015.12.001 – volume: 13 start-page: 3528 year: 2021 ident: ref78 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c17523 – volume: 10 start-page: 717 year: 2015 ident: ref72 publication-title: Nano Today doi: 10.1016/j.nantod.2015.11.004 – volume: 103 start-page: 56 year: 2016 ident: ref89 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.044 – volume: 79 start-page: 4557 year: 2019 ident: ref4 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-3962 – volume: 25 start-page: 657 year: 2008 ident: ref25 publication-title: Pharm Res doi: 10.1007/s11095-007-9480-4 – volume: 138 start-page: 962 year: 2016 ident: ref30 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b11720 – volume: 8 start-page: 9358 year: 2014 ident: ref38 publication-title: ACS Nano doi: 10.1021/nn503349g – volume: 328 start-page: 115417 year: 2021 ident: ref62 publication-title: J Mol Liq doi: 10.1016/j.molliq.2021.115417 – volume: 288 start-page: 2365 year: 2013 ident: ref99 publication-title: J Biol Chem doi: 10.1074/jbc.M112.429159 – volume: 214 start-page: 49 year: 2003 ident: ref46 publication-title: Colloids Surface A doi: 10.1016/S0927-7757(02)00389-8 – volume: 22 start-page: 100760 year: 2023 ident: ref131 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2023.100760 – volume: 29 start-page: 1700141 year: 2017 ident: ref91 publication-title: Adv Mat doi: 10.1002/adma.201700141 – volume: 9 start-page: 20180 year: 2019 ident: ref19 publication-title: Sci Rep doi: 10.1038/s41598-019-56754-8 – volume: 90 start-page: 363 year: 2003 ident: ref41 publication-title: J Control Release doi: 10.1016/S0168-3659(03)00205-0 – volume: 14 start-page: 725 year: 2012 ident: ref52 publication-title: Mol Imaging Biol doi: 10.1007/s11307-012-0549-z – volume: 11 start-page: 1643 year: 2016 ident: ref96 publication-title: Int J Nanomed doi: 10.2147/IJN.S101030 – volume: 54 start-page: 919 year: 2015 ident: ref21 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201408510 – volume: 12 start-page: 3846 year: 2020 ident: ref39 publication-title: Nanoscale doi: 10.1039/C9NR09869K – volume: 136 start-page: 5647 year: 2014 ident: ref42 publication-title: J Am Chem Soc doi: 10.1021/ja4108287 – volume: 93 start-page: 105 year: 2003 ident: ref82 publication-title: J Control Release doi: 10.1016/j.jconrel.2003.06.001 – volume: 64 start-page: 102599 year: 2021 ident: ref93 publication-title: J Drug Delivery Sci Technol doi: 10.1016/j.jddst.2021.102599 – volume: 54 start-page: 9890 year: 2015 ident: ref33 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201504444 – volume: 104 start-page: 7893 year: 2007 ident: ref51 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0702439104 – volume: 23 start-page: 1557 year: 2012 ident: ref53 publication-title: Bioconjug Chem doi: 10.1021/bc3000222 – volume: 5 start-page: 166 year: 2020 ident: ref6 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-00280-x – volume: 25 start-page: 1981 year: 2013 ident: ref110 publication-title: Adv Mater doi: 10.1002/adma.201204455 – volume: 8 start-page: 5769 year: 2017 ident: ref122 publication-title: Chem Sci doi: 10.1039/C7SC01765K – volume: 8 start-page: 1361 year: 2018 ident: ref76 publication-title: Theranostics doi: 10.7150/thno.18299 – volume: 32 start-page: 100851 year: 2020 ident: ref7 publication-title: Nano Today doi: 10.1016/j.nantod.2020.100851 – volume: 10 start-page: 33923 year: 2018 ident: ref75 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b11159 – volume: 277 start-page: 121110 year: 2021 ident: ref59 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121110 – volume: 7 start-page: eabe3588 year: 2021 ident: ref79 publication-title: Sci Adv doi: 10.1126/sciadv.abe3588 – volume: 21 start-page: 334 year: 2023 ident: ref130 publication-title: J Nanobiotechnol doi: 10.1186/s12951-023-02081-0 – volume: 69 start-page: 4510 year: 2009 ident: ref54 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3781 – volume: 16 start-page: 5503 year: 2016 ident: ref17 publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b01994 – volume: 10 start-page: e003960 year: 2022 ident: ref44 publication-title: J Immunother Cancer doi: 10.1136/jitc-2021-003960 – volume: 13 start-page: 10816 year: 2021 ident: ref83 publication-title: Nanoscale doi: 10.1039/D1NR01645H – volume: 6 start-page: 1053 year: 2016 ident: ref125 publication-title: Theranostics doi: 10.7150/thno.14843 – volume: 107 start-page: 4081 year: 2010 ident: ref50 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0914330107 – volume: 48 start-page: 4869 year: 2012 ident: ref32 publication-title: Chem Commun doi: 10.1039/c2cc31697h – volume: 4 start-page: 6805 year: 2010 ident: ref27 publication-title: ACS Nano doi: 10.1021/nn101670k – volume: 7 start-page: 1875 year: 2017 ident: ref15 publication-title: Theranostics doi: 10.7150/thno.18985 – volume: 98 start-page: 53 year: 2011 ident: ref104 publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.33076 – volume: 54 start-page: 9218 year: 2015 ident: ref80 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201503863 – volume: 10 start-page: 313 year: 2021 ident: ref105 publication-title: Immunotargets Ther doi: 10.2147/ITT.S291767 – volume: 74 start-page: 14 year: 2020 ident: ref10 publication-title: Eur J Clin Nutr doi: 10.1038/s41430-020-0684-6 – volume: 17 start-page: 23223 year: 2023 ident: ref34 publication-title: ACS nano doi: 10.1021/acsnano.3c06019 – volume: 135 start-page: 9805 year: 2013 ident: ref77 publication-title: J Am Chem Soc doi: 10.1021/ja402903h – volume: 226 start-page: 111634 year: 2022 ident: ref92 publication-title: J Inorg Biochem doi: 10.1016/j.jinorgbio.2021.111634 – volume: 5 start-page: 97 year: 2014 ident: ref49 publication-title: Front Physiol doi: 10.3389/fphys.2014.00097 – volume: 9 start-page: 1623 year: 2023 ident: ref57 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.3c00385 – volume: 8 start-page: 7154 year: 2020 ident: ref94 publication-title: Biomater Sci doi: 10.1039/D0BM01738H |
SSID | ssj0057869 |
Score | 2.528069 |
SecondaryResourceType | review_article |
Snippet | The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is... Yujie Wang,1 Tingting Deng,1 Xi Liu,2 Xueyang Fang,1 Yongpan Mo,3 Ni Xie,4 Guohui Nie,1 Bin Zhang,1 Xiaoqin Fan1,4 1Shenzhen Key Laboratory of Nanozymes and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6253 |
SubjectTerms | Animals Antineoplastic Agents - administration & dosage Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology cancer therapy drug delivery Drug Delivery Systems - methods Humans Hydrogen-Ion Concentration intelligent biomedicine Nanoparticles - chemistry Neoplasms - drug therapy Review stimulus-responsive tumor microenvironment Tumor Microenvironment - drug effects |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA7iaT2Irr-q7hLBk1CdSds0Pe7qigqK6AjeSpK-UWFsZaZz8L_3S9MZOiLsxWv7oGnea973NS_fY-wwGqZKguDAA0aHyPgUGt2LQlX0pSkSSUWjW3B9Iy8e4qvH5LHT6svVhHl5YD9xJ1ZJI0FihmQJYD7LjBW4oA0JygrbEB_kvBmZ8mswwlBm_jSe68Nzcnl1c3wfAzu7g7Kd_NPI9H-FLT-XSHZyzvkaW23BIv_jB7nOlqj8yVY6EoIb7Pn-Fe_AsUhWbyNdOwg64XdN4avLSryuOCAeH0xfqzG_dtV3naNtHOb81ulbTIifjadP_IxGrlDjnb-U_NQFxJgPvO7AJns4_zc4vQjb7gmhBeWqMdtGyhj4xUolUjKF6ctUgGHpqIhslBRxkg4jTCI4izICVpakhd-k1kmPRLTFlsuqpB3GJQElCXCdRl0ulVpJBVCuTZ-inrYmYEezOc1tKy3uOlyMclAM54AcDshbBwTscG785hU1vjb765wzN3Ey2M0FBEfeBkf-v-AI2MHMtTk-G7cXokuqppMcSxuwTqySOGDb3tXzR7mtWxDHNGBqIQgWxrJ4p3x5bqS5kTkyIDyx-x2j32M_BCCU_-Gzz5br8ZR-AQLV5ncT7R-x7Qc8 priority: 102 providerName: Directory of Open Access Journals |
Title | Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38911497 https://www.proquest.com/docview/3071514854 https://pubmed.ncbi.nlm.nih.gov/PMC11193972 https://doaj.org/article/c86b6549fece49599bc2b65abe2e9dc1 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7S5NIeSvpW05ot5FRQaq2k3fWhlOaFG7AJiQ3uSeyu1knAkVJZhubfd2YlGzv40IsO0gg9vlnNN9rZbwAO46lUAhMcRMDoECO-C43uxqHKI2HyVLjc6xYMhqI_Ti4m6WQHls042xc435raUT-pcTU7-vvn8QcO-O9Uxhwl8tuvi-HRdYLMmJZa7WFIktTKYJCsphPQK31vuyiS5BZR3CzUe3ryRmjyCv7baOfT6sm1cHS-Dy9bHsl-NsC_gh1XvIYXa-qCb-D2-h79guH3s3yY6ZrY6Zxd-ZpYClisLhmyPzZa3JcVG1Bh3tqqN4bm7JKkL-aOnVaLG3bqZlTD8cjuCnZCvlKxUSNJ8BbG52ejk37YNlYILWZjNQJhhEiQ2lihuHQmN5GQHJMvHeexjdM8SeU05o7E4JThaGWdsAip0DrtOh6_g92iLNwHYMIhgeKYBnnhOSm0Egr5ujaRi7vamgC-Lt9pZlvVcWp-Mcsw-yAAMgQgawEI4HBl_NCIbWw3OyZwViakkO13lNVN1g64zCphBCa_U2cdJoG9nrEcd2jj8LlyGwXwZQlthiOKpkl04crFPMOvHtKgRKVJAO8bqFeXolldzCllAGrDCTbuZfNIcXfrVbsxqPSQ_PGP__eQB_CcI39q_vZ8gt26WrjPyH9q04Fn3d993MqJ7MDe8dnw8qrj_yV0vNf_A2HfB8A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Nanoplatforms+Responding+to+the+Tumor+Microenvironment+for+Precise+Drug+Delivery+in+Cancer+Therapy&rft.jtitle=International+journal+of+nanomedicine&rft.au=Wang%2C+Yujie&rft.au=Deng%2C+Tingting&rft.au=Liu%2C+Xi&rft.au=Fang%2C+Xueyang&rft.date=2024-01-01&rft.issn=1178-2013&rft.eissn=1178-2013&rft.volume=19&rft.spage=6253&rft.epage=6277&rft_id=info:doi/10.2147%2FIJN.S459710&rft.externalDBID=n%2Fa&rft.externalDocID=10_2147_IJN_S459710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-2013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-2013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-2013&client=summon |