Targeting the TDP-43 low complexity domain blocks spreading of pathology in a mouse model of ALS/FTD

Abnormal cytoplasmic localization and accumulation of pathological transactive response DNA binding protein of 43 kDa (TDP-43) underlies several devastating diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). A key element is t...

Full description

Saved in:
Bibliographic Details
Published inActa neuropathologica communications Vol. 12; no. 1; pp. 156 - 14
Main Authors Chevalier, Elodie, Audrain, Mickael, Ratnam, Monisha, Ollier, Romain, Fuchs, Aline, Piorkowska, Kasia, Pfeifer, Andrea, Kosco-Vilbois, Marie, Seredenina, Tamara, Afroz, Tariq
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 03.10.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abnormal cytoplasmic localization and accumulation of pathological transactive response DNA binding protein of 43 kDa (TDP-43) underlies several devastating diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). A key element is the correlation between disease progression and spatio-temporal propagation of TDP-43-mediated pathology in the central nervous system. Several lines of evidence support the concept of templated aggregation and cell to cell spreading of pathological TDP-43. To further investigate this mechanism in vivo, we explored the efficacy of capturing and masking the seeding-competent region of extracellular TDP-43 species. For this, we generated a novel monoclonal antibody (mAb), ACI-6677, that targets the pathogenic protease-resistant amyloid core of TDP-43. ACI-6677 has a picomolar binding affinity for TDP-43 and is capable of binding to all C-terminal TDP-43 fragments. In vitro, ACI-6677 inhibited TDP-43 aggregation and boosted removal of pathological TDP-43 aggregates by phagocytosis. When injecting FTLD-TDP brain extracts unilaterally in the CamKIIa-hTDP-43NLSm mouse model, ACI-6677 significantly limited the induction of phosphorylated TDP-43 (pTDP-43) inclusions. Strikingly, on the contralateral side, the mAb significantly prevented pTDP-43 inclusion appearance exemplifying blocking of the spreading process. Taken together, these data demonstrate for the first time that an immunotherapy targeting the protease-resistant amyloid core of TDP-43 has the potential to restrict spreading, substantially slowing or stopping progression of disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2051-5960
2051-5960
DOI:10.1186/s40478-024-01867-z