An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins
The paper investigates climate change impacts on streamflow seasonality for a set of eleven representative large river basins covering all continents and a wide range of climatic and physiographic settings. Based on an ensemble of nine regional hydrological models driven by climate projections deriv...
Saved in:
Published in | Climatic change Vol. 141; no. 3; pp. 401 - 417 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The paper investigates climate change impacts on streamflow seasonality for a set of eleven representative large river basins covering all continents and a wide range of climatic and physiographic settings. Based on an ensemble of nine regional hydrological models driven by climate projections derived from five global circulation models under four representative concentration pathways, we analyzed the median and range of projected changes in seasonal streamflow by the end of the twenty-first century and examined the uncertainty arising from the different members of the modelling chain. Climate change impacts on the timing of seasonal streamflow were found to be small except for two basins. In many basins, we found an acceleration of the existing seasonality pattern, i.e. high-flows are projected to increase and/or low-flows are projected to decrease. In some basins the hydrologic projections indicate opposite directions of change which cancel out in the ensemble median, i.e., no robust conclusions could be drawn. In the majority of the basins, differences in projected streamflow seasonality between the low emission pathway and the high emission pathway are small with the exception of four basins. For these basins our results allow conclusions on the potential benefits (or adverse effects) of avoided GHG emissions for the seasonal streamflow regime. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0165-0009 1573-1480 |
DOI: | 10.1007/s10584-016-1844-5 |