Vibrations and relaxations in a soft sphere glass: boson peak and structure factors

The dynamics of a soft sphere model glass, studied by molecular dynamics, is investigated. The vibrational density of states divided by *w2 shows a pronounced boson peak. Its shape is in agreement with the universal form derived for soft oscillators interacting with sound waves. The excess vibration...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 16; no. 27; pp. S2659 - 2670
Main Author Schober, H R
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 14.07.2004
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The dynamics of a soft sphere model glass, studied by molecular dynamics, is investigated. The vibrational density of states divided by *w2 shows a pronounced boson peak. Its shape is in agreement with the universal form derived for soft oscillators interacting with sound waves. The excess vibrations forming the boson peak have mainly transverse character. From the dynamic structure factor in the Brillouin regime pseudo dispersion curves are calculated. Whereas the longitudinal phonons are well defined up to the pseudo zone boundary the transverse ones rapidly get over-damped and go through the Ioffe-Regel limit near the boson peak frequency. In the high q regime constant-*w scans of the dynamic structure factor for frequencies around the boson peak are clearly distinct from those for zone boundary frequencies. Above the Brillouin regime, the scans for the low frequency modes follow closely the static structure factor. This still holds after a deconvolution of the exact harmonic eigenmodes into local and extended modes. Also the structure factor for local relaxations at finite temperatures resembles the static one. This semblance between the structure factors mirrors the collective motion of chain-like structures in both low frequency vibrations and atomic hopping processes, observed in the earlier investigations. The aim of the present paper is to use a simple model glass, representative for densely packed metallic glasses, to see what information can be gained from the dynamic structure both in the Brillouin regime and for higher q-values.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/16/27/005