SHR3824, a novel selective inhibitor of renal sodium glucose cotransporter 2, exhibits antidiabetic efficacy in rodent models

Aim: The sodium glucose cotransporter 2 (SGLT2) plays an Jmportant role in renal glucose reabsorption, thus serves as a new target for the treatment of diabetes. The purpose of this study was to evaluate SHR3824 as a novel selective SGLT2 inhibitor and to characterize its in vivo effects on glucose...

Full description

Saved in:
Bibliographic Details
Published inActa pharmacologica Sinica Vol. 35; no. 5; pp. 613 - 624
Main Authors Yan, Pang-ke, Zhang, Li-na, Feng, Ying, Qu, Hui, Qin, Li, Zhang, Lian-shan, Leng, Ying
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aim: The sodium glucose cotransporter 2 (SGLT2) plays an Jmportant role in renal glucose reabsorption, thus serves as a new target for the treatment of diabetes. The purpose of this study was to evaluate SHR3824 as a novel selective SGLT2 inhibitor and to characterize its in vivo effects on glucose homeostasis. The effects of chronic administration of SHR3824 on peripheral insulin sensitivity and pancreatic !5-cell function were also investigated. Methods: The in vitro potency and selectivity of SHR3824 were assessed in HEK293 cells transfected with human SGLT2 or SGLTI. Acute and multi-dose studies were performed on ICR mice, GK rats and db/db mice to assess the ability of SHR3824 to enhance urinary glucose excretion and improve blood glucose levels. 2-Deoxyglucose uptake and insulin immunohistochemical staining were performed in the soleus muscle and pancreas, respectively, of db/db mice. A selective SGLT2 inhibitor BMS512148 (dapagliflozin) was taken as positive control. Results: SHR3824 potently inhibited human SGLT2 in vitro, but exerted much weak inhibition on human SGLT1 (the IC50 values of SHR3824 against human SGLT2 and SGLT1 were 2.38 and 4324 nmol/L, respectively). Acute oral administration of SHR3824 (0.3, 1.0, 3.0 mg/kg) dose-dependently improved glucose tolerance in ICR mice, and reduced hyperglycemia by increasing urinary glucose excretion in GK rats and db/db mice. Chronic oral administration of SHR3824 (0.3, 1.0, 3.0 mg·kg·d-1) dose-dependently reduced blood glucose and HbAlc levels in GK rats and db/db mice, and significantly increased insulin-stimulated glucose uptake in the soleus muscles and enhanced insulin staining in the islet cells of db/db mice. Conclusion: SHR3824 is a potent and selective SGLT2 inhibitor and exhibits antidiabetic efficacy in several rodent models, suggesting its potential as a new therapeutic agent for the treatment of type 2 diabetes.
Bibliography:sodium glucose cotransporter 2 (SGLT2); SHR3824; dapagliflozin; type 2 diabetes mellitus; blood glucose; insulin sensitivity;β-cell function
Aim: The sodium glucose cotransporter 2 (SGLT2) plays an Jmportant role in renal glucose reabsorption, thus serves as a new target for the treatment of diabetes. The purpose of this study was to evaluate SHR3824 as a novel selective SGLT2 inhibitor and to characterize its in vivo effects on glucose homeostasis. The effects of chronic administration of SHR3824 on peripheral insulin sensitivity and pancreatic !5-cell function were also investigated. Methods: The in vitro potency and selectivity of SHR3824 were assessed in HEK293 cells transfected with human SGLT2 or SGLTI. Acute and multi-dose studies were performed on ICR mice, GK rats and db/db mice to assess the ability of SHR3824 to enhance urinary glucose excretion and improve blood glucose levels. 2-Deoxyglucose uptake and insulin immunohistochemical staining were performed in the soleus muscle and pancreas, respectively, of db/db mice. A selective SGLT2 inhibitor BMS512148 (dapagliflozin) was taken as positive control. Results: SHR3824 potently inhibited human SGLT2 in vitro, but exerted much weak inhibition on human SGLT1 (the IC50 values of SHR3824 against human SGLT2 and SGLT1 were 2.38 and 4324 nmol/L, respectively). Acute oral administration of SHR3824 (0.3, 1.0, 3.0 mg/kg) dose-dependently improved glucose tolerance in ICR mice, and reduced hyperglycemia by increasing urinary glucose excretion in GK rats and db/db mice. Chronic oral administration of SHR3824 (0.3, 1.0, 3.0 mg·kg·d-1) dose-dependently reduced blood glucose and HbAlc levels in GK rats and db/db mice, and significantly increased insulin-stimulated glucose uptake in the soleus muscles and enhanced insulin staining in the islet cells of db/db mice. Conclusion: SHR3824 is a potent and selective SGLT2 inhibitor and exhibits antidiabetic efficacy in several rodent models, suggesting its potential as a new therapeutic agent for the treatment of type 2 diabetes.
31-1347/R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1671-4083
1745-7254
DOI:10.1038/aps.2013.196