Microstructure and Mechanical Properties of High Manganese TRIP Steel

Microstructure evolution and mechanical properties of newly designed 0.1C-6Mn-0.5Si-1Al TRIP-aided steels under different annealing conditions and the effects of matrix microstructure before intercritical annealing on the final microstructure were studied by means of X-ray diffraction(XRD),scanning...

Full description

Saved in:
Bibliographic Details
Published inJournal of iron and steel research, international Vol. 19; no. 4; pp. 57 - 62
Main Authors ZHAO, Jin-long, XI, Yan, SHI, Wen, LI, Lin
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.04.2012
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microstructure evolution and mechanical properties of newly designed 0.1C-6Mn-0.5Si-1Al TRIP-aided steels under different annealing conditions and the effects of matrix microstructure before intercritical annealing on the final microstructure were studied by means of X-ray diffraction(XRD),scanning electron microcopy(SEM),dilatometric simulation,optical microstructure(OM) and tensile testing in this work.The experimental results indicate that the TRIP steel with Mn of 6% could form a considerable amount of retained austenite with good TRIP effect after a simple intercritical annealing treatment,and the matrix microstructure before intercritical annealing treatment can greatly affect the final microstructure.The original microstructure of the ferritic matrix steel was eliminated,while annealed martensite was remained from the martensite matrix steel under the same intercritical annealing conditions
Bibliography:11-3678/TF
Microstructure evolution and mechanical properties of newly designed 0.1C-6Mn-0.5Si-1Al TRIP-aided steels under different annealing conditions and the effects of matrix microstructure before intercritical annealing on the final microstructure were studied by means of X-ray diffraction(XRD),scanning electron microcopy(SEM),dilatometric simulation,optical microstructure(OM) and tensile testing in this work.The experimental results indicate that the TRIP steel with Mn of 6% could form a considerable amount of retained austenite with good TRIP effect after a simple intercritical annealing treatment,and the matrix microstructure before intercritical annealing treatment can greatly affect the final microstructure.The original microstructure of the ferritic matrix steel was eliminated,while annealed martensite was remained from the martensite matrix steel under the same intercritical annealing conditions
high manganese TRIP steel; intercritical annealing; microstructure; mechanical properties
ZHAO Jin-long,XI Yan,SHI Wen,LI Lin(College of Material Science and Engineering,Shanghai University,Shanghai 200072,China)
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1006-706X
2210-3988
DOI:10.1016/S1006-706X(12)60088-0