Properties and applications of high-mobility semiconducting nanotubes

Experiments to determine the resistivity and charge-carrier mobility in semiconducting carbon nanotubes are reviewed. Electron transport experiments on long chemical-vapour-deposition-grown semiconducting carbon nanotubes are interpreted in terms of diffusive transport in a field-effect transistor....

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 16; no. 18; pp. R553 - R580
Main Authors Dürkop, T, Kim, B M, Fuhrer, M S
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 12.05.2004
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Experiments to determine the resistivity and charge-carrier mobility in semiconducting carbon nanotubes are reviewed. Electron transport experiments on long chemical-vapour-deposition-grown semiconducting carbon nanotubes are interpreted in terms of diffusive transport in a field-effect transistor. This allows for extraction of the field-effect and saturation mobilities for hole carriers, as well as an estimate of the intrinsic hole mobility of the nanotubes. The intrinsic mobility can exceed 100000 cm2 V-1 s-1 at room temperature, which is greater than any other known semiconductor. Scanned-probe experiments show a low degree of disorder in chemicalvapour-deposition-grown semiconducting carbon nanotubes compared with laser-ablation produced nanotubes, and show conductivity and mean-free-path consistent with the high mobility values seen in transport experiments. The application of high-mobility semiconducting nanotubes to charge detection and memory is also reviewed; it is shown that single electronic charges may be detected with a semiconducting nanotube field-effect transistor at operating temperatures up to 200 K.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/16/18/R01