Effects of in-Season Short-Term Plyometric Training Program on Leg Power, Jump- and Sprint Performance of Soccer Players

Chelly, MS, Ghenem, MA, Abid, K, Hermassi, S, Tabka, Z, and Shephard, RJ. Effects of in-season short-term plyometric training program on leg power, jump- and sprint performance of soccer players. J Strength Cond Res 24(10)2670-2676, 2010-Our hypothesis was that the addition of an 8-week lower limb p...

Full description

Saved in:
Bibliographic Details
Published inJournal of strength and conditioning research Vol. 24; no. 10; pp. 2670 - 2676
Main Authors Chelly, Mohamed Souhaiel, Ghenem, Mohamed Ali, Abid, Khalil, Hermassi, Souhail, Tabka, Zouhair, Shephard, Roy J
Format Journal Article
LanguageEnglish
Published United States National Strength and Conditioning Association 01.10.2010
Lippincott Williams & Wilkins Ovid Technologies
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chelly, MS, Ghenem, MA, Abid, K, Hermassi, S, Tabka, Z, and Shephard, RJ. Effects of in-season short-term plyometric training program on leg power, jump- and sprint performance of soccer players. J Strength Cond Res 24(10)2670-2676, 2010-Our hypothesis was that the addition of an 8-week lower limb plyometric training program (hurdle and depth jumping) to normal in-season conditioning would enhance measures of competitive potential (peak power output [PP], jump force, jump height, and lower limb muscle volume) in junior soccer players. The subjects (23 men, age 19 ± 0.7 years, body mass 70.5 ± 4.7 kg, height 1.75 ± 0.06 m, body fat 14.7 ± 2.6%) were randomly assigned to a control (normal training) group (Gc; n = 11) and an experimental group (Gex, n = 12) that also performed biweekly plyometric training. A force-velocity ergometer test determined PP. Characteristics of the squat jump (SJ) and the countermovement jump (CMJ) (jump height, maximal force and velocity before take-off, and average power) were determined by force platform. Video-camera kinematic analyses over a 40-m sprint yielded running velocities for the first step (VS), the first 5 m (V5m) and between 35 and 40 m (Vmax). Leg muscle volume was estimated using a standard anthropometric kit. Gex showed gains relative to controls in PP (p < 0.01); SJ (height p < 0.01; velocity p < 0.001), CMJ (height p < 0.001; velocity p < 0.001, average power p < 0.01) and all sprint velocities (p < 0.001 for V5m and Vmax, p < 0.01 for VS). There was also a significant increase (p < 0.05) in thigh muscle volume, but leg muscle volume and mean thigh cross-sectional area remain unchanged. We conclude that biweekly plyometric training of junior soccer players (including adapted hurdle and depth jumps) improved important components of athletic performance relative to standard in-season training. Accordingly, such exercises are highly recommended as part of an annual soccer training program.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ISSN:1064-8011
1533-4287
1533-4287
DOI:10.1519/JSC.0b013e3181e2728f