Chemical Composition of Residue from Cereal Crops and Cultivars in Dryland Ecosystems

Cropping systems in the dryland farming region of eastern Washington State are dominated by winter and spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.). Excessive levels of residue may be an obstacle in the adoption of conservation farming systems. Decomposition of cereal c...

Full description

Saved in:
Bibliographic Details
Published inAgronomy journal Vol. 101; no. 3; pp. 538 - 545
Main Authors Stubbs, T.L, Kennedy, A.C, Reisenauer, P.E, Burns, J.W
Format Journal Article
LanguageEnglish
Published Madison American Society of Agronomy 01.05.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cropping systems in the dryland farming region of eastern Washington State are dominated by winter and spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.). Excessive levels of residue may be an obstacle in the adoption of conservation farming systems. Decomposition of cereal crop residues is associated with fiber and nutrient content, and growers have observed differences in decomposition among cultivars; however, little information exists on their residue characteristics. Cultivars of spring barley (SB), spring wheat (SW), and winter wheat (WW) grown at four locations over two crop years were analyzed for neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), C, and N contents, and winter wheat decomposition was tested in a laboratory incubation study. Acid detergent lignin was highest in spring barley (9.9%), and least in winter wheat (9.2%) and hard white spring wheat (9.5%). Fiber components and nutrient content varied by location, precipitation zone, and cultivar. Residue in the drier year of the study had lower NDF, ADF, ADL, C, and C/N ratio. Foot rot (Fusarium spp.)-resistant winter wheat cultivars had higher NDF, ADF, and ADL than susceptible cultivars. Laboratory incubation studies showed decomposition of winter wheat straw in soil was correlated with ADF (R2 > 0.66, P = 0.002) and total N (R2 > 0.67, P = 0.04). Fiber and nutrient characteristics of residue from wheat and barley cultivars currently produced in the Pacific Northwest can be used to predict residue decomposition in cropping systems that conserve soil and water, and enhance build-up of organic matter.
Bibliography:http://hdl.handle.net/10113/31576
http://dx.doi.org/10.2134/agronj2008.0107x
All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-1962
1435-0645
DOI:10.2134/agronj2008.0107x