Up‐regulation of miR‐195 contributes to cardiac hypertrophy‐induced arrhythmia by targeting calcium and potassium channels

Previous studies have confirmed that miR‐195 expression is increased in cardiac hypertrophy, and the bioinformatics website predicted by Targetscan software shows that miR‐195 can directly target CACNB1, KCNJ2 and KCND3 to regulate Cavβ1, Kir2.1 and Kv4.3 proteins expression. The purpose of this stu...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular and molecular medicine Vol. 24; no. 14; pp. 7991 - 8005
Main Authors Xuan, Lina, Zhu, Yanmeng, Liu, Yunqi, Yang, Hua, Wang, Shengjie, Li, Qingqi, Yang, Chao, Jiao, Lei, Zhang, Ying, Yang, Baofeng, Sun, Lihua
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.07.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous studies have confirmed that miR‐195 expression is increased in cardiac hypertrophy, and the bioinformatics website predicted by Targetscan software shows that miR‐195 can directly target CACNB1, KCNJ2 and KCND3 to regulate Cavβ1, Kir2.1 and Kv4.3 proteins expression. The purpose of this study is to confirm the role of miR‐195 in arrhythmia caused by cardiac hypertrophy. The protein levels of Cavβ1, Kir2.1 and Kv4.3 in myocardium of HF mice were decreased. After miR‐195 was overexpressed in neonatal mice cardiomyocytes, the expression of ANP, BNP and β‐MHC was up‐regulated, and miR‐195 inhibitor reversed this phenomenon. Overexpression of miR‐195 reduced the estimated cardiac function of EF% and FS% in wild‐type (WT) mice. Transmission electron microscopy showed that the ultrastructure of cardiac tissues was damaged after miR‐195 overexpression by lentivirus in mice. miR‐195 overexpression increased the likelihood of arrhythmia induction and duration of arrhythmia in WT mice. Lenti‐miR‐195 inhibitor carried by lentivirus can reverse the decreased EF% and FS%, the increased incidence of arrhythmia and prolonged duration of arrhythmia induced by TAC in mice. After miR‐195 treatment, the protein expressions of Cavβ1, Kir2.1 and Kv4.3 were decreased in mice. The results were consistent at animal and cellular levels, respectively. Luciferase assay results showed that miR‐195 may directly target CACNB1, KCNJ2 and KCND3 to regulate the expression of Cavβ1, Kir2.1 and Kv4.3 proteins. MiR‐195 is involved in arrhythmia caused by cardiac hypertrophy by inhibiting Cavβ1, Kir2.1 and Kv4.3.
Bibliography:Lina Xuan and Yanmeng Zhu authors contributed equally to this paper.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1582-1838
1582-4934
DOI:10.1111/jcmm.15431