Robust Assignment of Airport Gates with Operational Safety Constraints

This paper reviews existing approaches to the airport gate assignment problem (AGAP) and presents an optimization model for the problem considering operational safety constraints. The main objective is to minimize the dispersion of gate idle time periods (to get robust optimization) while ensuring a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automation and computing Vol. 13; no. 1; pp. 31 - 41
Main Authors Liu, Shuo, Chen, Wen-Hua, Liu, Jiyin
Format Journal Article
LanguageEnglish
Published Beijing Institute of Automation, Chinese Academy of Sciences 01.02.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1476-8186
2153-182X
1751-8520
2153-1838
DOI10.1007/s11633-015-0914-x

Cover

Loading…
More Information
Summary:This paper reviews existing approaches to the airport gate assignment problem (AGAP) and presents an optimization model for the problem considering operational safety constraints. The main objective is to minimize the dispersion of gate idle time periods (to get robust optimization) while ensuring appropriate matching between the size of each aircraft and its assigned gate type and avoiding the potential hazard caused by gate apron operational conflict. Genetic algorithm is adopted to solve the problem, An illustrative example is given to show the effectiveness and efficiency of the algorithm. The algorithm performance is further demonstrated using data of a terminal from Beijing Capital International Airport (PEK).
Bibliography:This paper reviews existing approaches to the airport gate assignment problem (AGAP) and presents an optimization model for the problem considering operational safety constraints. The main objective is to minimize the dispersion of gate idle time periods (to get robust optimization) while ensuring appropriate matching between the size of each aircraft and its assigned gate type and avoiding the potential hazard caused by gate apron operational conflict. Genetic algorithm is adopted to solve the problem, An illustrative example is given to show the effectiveness and efficiency of the algorithm. The algorithm performance is further demonstrated using data of a terminal from Beijing Capital International Airport (PEK).
11-5350/TP
Gate assignment problem, operational safety constraints, robust optimization, conflict avoidance, genetic algorithm.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1476-8186
2153-182X
1751-8520
2153-1838
DOI:10.1007/s11633-015-0914-x