Influence of climatic conditions in the mesothermal climate area on pregnancies following elective fresh single blastocyst transfer

Purpose To investigate the effect of climatic parameters in the mesothermal climate area on clinical pregnancy and live birth following fresh single blastocyst transfer. Methods This study investigated clinical pregnancies and live births that resulted from 555 ovarian stimulation cycles followed by...

Full description

Saved in:
Bibliographic Details
Published inJournal of assisted reproduction and genetics Vol. 39; no. 12; pp. 2789 - 2797
Main Authors Matsumoto, Hiroshi, Hashimoto, Shu, Mizuno, Satoshi, Fukuda, Aisaku, Morimoto, Yoshiharu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose To investigate the effect of climatic parameters in the mesothermal climate area on clinical pregnancy and live birth following fresh single blastocyst transfer. Methods This study investigated clinical pregnancies and live births that resulted from 555 ovarian stimulation cycles followed by fresh single blastocyst transfer. The samples were stratified according to climatic conditions (low T, temperature < 12.9 °C; middle T, 12.9 °C ≤ temperature < 22.6 °C; high T, temperature ≥ 22.6 °C; low H, relative humidity < 62.1%; middle H, 62.1% ≤ relative humidity < 66.5%; high H, relative humidity ≥ 66.5%; short S, sunlight duration < 5.2 h; middle S, 5.2 h ≤ sunlight duration < 6.7 h; long S, sunlight duration ≥ 6.7 h). Clinical pregnancy and live birth rates among three groups from each climatic parameter were compared. Multivariable analyses were performed to investigate the effects of climatic conditions on blastocyst development, endometrial thickness, clinical pregnancy, and live birth. Results A statistically significant difference was found in pregnancy rates among low T (48.8%), middle T (37.3%), and high T (36.6%) groups. Multivariable analyses revealed that temperature was associated with clinical pregnancy and live birth rates with adjustment for patient age, BMI, type of ovarian stimulation, endometrial thickness, and expansion grade of the transferred blastocyst. The association between climatic parameters and blastocyst development and endometrial thickness was not confirmed. Conclusions This study suggests that lower temperatures in the mesothermal climate area could favorably affect the rates of clinical pregnancy and live birth achieved by fresh single blastocyst transfer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1058-0468
1573-7330
DOI:10.1007/s10815-022-02668-w