A three-dimensional stacked fin-CMOS technology for high-density ULSI circuits

In this paper, a three-dimensional CMOS technology is proposed and implemented using stacked Fin-CMOS (SF-CMOS) architecture. The technology is based on a double layer silicon-on-insulator wafer formed by two oxygen implants to create two single-crystal silicon films with an oxide isolation layer in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 52; no. 9; pp. 1998 - 2003
Main Authors Xusheng Wu, Chan, P.C.H., Shengdong Zhang, Chuguang Feng, Chan, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a three-dimensional CMOS technology is proposed and implemented using stacked Fin-CMOS (SF-CMOS) architecture. The technology is based on a double layer silicon-on-insulator wafer formed by two oxygen implants to create two single-crystal silicon films with an oxide isolation layer in between. The proposed approach achieves a 50% area reduction and significant shortening of the wiring distance between active devices through vertical connection when compared with conventional planar CMOS technology. The SF-CMOS technology also inherits the scalability and two-dimensional processing compatibility of the FinFET structure. SF-CMOS devices and simple circuits were fabricated and characterized.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2005.854267