A three-dimensional stacked fin-CMOS technology for high-density ULSI circuits
In this paper, a three-dimensional CMOS technology is proposed and implemented using stacked Fin-CMOS (SF-CMOS) architecture. The technology is based on a double layer silicon-on-insulator wafer formed by two oxygen implants to create two single-crystal silicon films with an oxide isolation layer in...
Saved in:
Published in | IEEE transactions on electron devices Vol. 52; no. 9; pp. 1998 - 2003 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a three-dimensional CMOS technology is proposed and implemented using stacked Fin-CMOS (SF-CMOS) architecture. The technology is based on a double layer silicon-on-insulator wafer formed by two oxygen implants to create two single-crystal silicon films with an oxide isolation layer in between. The proposed approach achieves a 50% area reduction and significant shortening of the wiring distance between active devices through vertical connection when compared with conventional planar CMOS technology. The SF-CMOS technology also inherits the scalability and two-dimensional processing compatibility of the FinFET structure. SF-CMOS devices and simple circuits were fabricated and characterized. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2005.854267 |