Controllability of Boolean control networks via the Perron–Frobenius theory

Boolean control networks (BCNs) are recently attracting considerable interest as computational models for genetic and cellular networks. Addressing control-theoretic problems in BCNs may lead to a better understanding of the intrinsic control in biological systems, as well as to developing suitable...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 48; no. 6; pp. 1218 - 1223
Main Authors Laschov, Dmitriy, Margaliot, Michael
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Boolean control networks (BCNs) are recently attracting considerable interest as computational models for genetic and cellular networks. Addressing control-theoretic problems in BCNs may lead to a better understanding of the intrinsic control in biological systems, as well as to developing suitable protocols for manipulating biological systems using exogenous inputs. We introduce two definitions for controllability of a BCN, and show that a necessary and sufficient condition for each form of controllability is that a certain nonnegative matrix is irreducible or primitive, respectively. Our analysis is based on a result that may be of independent interest, namely, a simple algebraic formula for the number of different control sequences that steer a BCN between given initial and final states in a given number of time steps, while avoiding a set of forbidden states.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2012.03.022