Large-Scale Aspects of the United States Hydrologic Cycle

A large-scale, gridpoint, atmospheric, hydrologic climatology consisting of atmospheric precipitable water, precipitation, atmospheric moisture flux convergence, and a residual evaporation for the conterminous United States is described. A large-scale, basin, hydrologic climatology of the same atmos...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the American Meteorological Society Vol. 75; no. 9; pp. 1589 - 1610
Main Authors Roads, John O., Chen, Shyh-C., Guetter, Alexander K., Georgakakos, Konstantine P.
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 01.09.1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A large-scale, gridpoint, atmospheric, hydrologic climatology consisting of atmospheric precipitable water, precipitation, atmospheric moisture flux convergence, and a residual evaporation for the conterminous United States is described. A large-scale, basin, hydrologic climatology of the same atmospheric variables is also described, as well as residual surface water and streamflow divergence or runoff for various large-scale river basins terminating at the United States boundary. Climatologically, precipitation, which had a U.S. annual mean of more than 2.1 mm day−1, was largely balanced by evaporation; atmospheric moisture flux convergence was also an important contributor (∼0.5 mm day−1), especially during the wintertime, and especially along the U.S. west coast. At the surface, seasonal and anomalous surface water (including snow) variations on the order of 10 cm yr−1 were forced by seasonal variations of about 1 mm day−1 in atmospheric moisture flux convergence (precipitation minus evaporation) and streamflow divergence. The strongest seasonal variations were found along the West Coast. Unlike the climatological means and seasonal variations, atmospheric precipitation anomalies were best related to atmospheric moisture flux convergence anomalies and less well related to the residual evaporation anomalies. Streamflow divergence anomalies were also related to the atmospheric moisture flux convergence anomalies, especially at lags of around 15 days. A better lag relationship occurred between streamflow divergence and precipitation anomalies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0003-0007
1520-0477
DOI:10.1175/1520-0477(1994)075<1589:lsaotu>2.0.co;2