Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation

Scaffolds are needed that can act as temporary templates for bone regeneration and actively stimulate vascularized bone growth so that bone grafting is no longer necessary. To achieve this, the scaffold must have a suitable interconnected pore network and be made of an osteogenic material. Bioactive...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Vol. 224; no. 12; p. 1373
Main Authors Jones, J R, Lin, S, Yue, S, Lee, P D, Hanna, J V, Smith, M E, Newport, R J
Format Journal Article
LanguageEnglish
Published England 01.12.2010
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Scaffolds are needed that can act as temporary templates for bone regeneration and actively stimulate vascularized bone growth so that bone grafting is no longer necessary. To achieve this, the scaffold must have a suitable interconnected pore network and be made of an osteogenic material. Bioactive glass is an ideal material because it rapidly bonds to bone and degrades over time, releasing soluble silica and calcium ions that are thought to stimulate osteoprogenitor cells. Melt-derived bioactive glasses, such as the original Bioglass composition, are available commercially, but porous scaffolds have been difficult to produce because Bioglass and similar compositions crystallize on sintering. Sol-gel foam scaffolds have been developed that avoid this problem. They have a hierarchical pore structure comprising interconnected macropores, with interconnect diameters in excess of the 100 microm that is thought to be needed for vascularized bone ingrowth, and an inherent nanoporosity of interconnected mesopores (2-50 nm) which is beneficial for the attachment of osteoprogenitor cells. They also have a compressive strength in the range of cancellous bone. This paper describes the optimized sol-gel foaming process and illustrates the importance of optimizing the hierarchical structure from the atomic through nano, to the macro scale with respect to biological response.
ISSN:0954-4119
DOI:10.1243/09544119JEIM836