Classification of Exacerbation Frequency in the COPDGene Cohort Using Deep Learning With Deep Belief Networks

This study aims to develop an automatic classifier based on deep learning for exacerbation frequency in patients with chronic obstructive pulmonary disease (COPD). A three-layer deep belief network (DBN) with two hidden layers and one visible layer was employed to develop classification models and t...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 24; no. 6; pp. 1805 - 1813
Main Authors Ying, Jun, Dutta, Joyita, Guo, Ning, Hu, Chenhui, Zhou, Dan, Sitek, Arkadiusz, Li, Quanzheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aims to develop an automatic classifier based on deep learning for exacerbation frequency in patients with chronic obstructive pulmonary disease (COPD). A three-layer deep belief network (DBN) with two hidden layers and one visible layer was employed to develop classification models and the models' robustness to exacerbation was analyzed. Subjects from the COPDGene cohort were labeled with exacerbation frequency, defined as the number of exacerbation events per year. A total of 10 300 subjects with 361 features each were included in the analysis. After feature selection and parameter optimization, the proposed classification method achieved an accuracy of 91.99%, using a ten-fold cross validation experiment. The analysis of DBN weights showed that there was a good visual spatial relationship between the underlying critical features of different layers. Our findings show that the most sensitive features obtained from the DBN weights are consistent with the consensus showed by clinical rules and standards for COPD diagnostics. We, thus, demonstrate that DBN is a competitive tool for exacerbation risk assessment for patients suffering from COPD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2016.2642944